CUDA Deep Dive: From Fundamentals to
Advanced Techniques

N. Shukla | S. Orlandini | L. Ferraro

HPC Application Engineer
April 2nd 2025

CINECA

Roadmap to basic to advanced

Why you should care about CUDA?

1
Grasping the basic elements of GPU programming
CUDA programming model
2
Kernel launch, Thread and Memory hierarchy
Performance consideration
3
Memory management, analysis Nsight and Nvidia
Streams and Concurrency
4

Overlapping kernel execution & data transfer on Single/Multi GPU

CINECA

Topics is covered here

Identify the basic terminology used in CUDA

Compute Unified Device Architecture

CUDA programming Model

Program structure, Kernel launch, Managed memory, compilation workflow
Measuring GPU performance

Execution Model

Understanding the Nature of Warp Execution, Thread hierarchy

CINECA

2 Why you should care about CUDA?

CINECA

Ways to parallels an applications on Nvidia GPUs

Applications

Increasing programming effort

Libraries OpenACC/QpenMP CUDA
Directives
Drop-in Acceleration Easy Accelerations Maximum Flexibility
e e T
Productivity Portability Performance

CINECA

Why CUDA matters

Best of both worlds

- High-Level Productivity

Use optimized libraries
(cuBLAS, cuDNN) for Al, math,
and analytics without
reinventing the wheel.
Frameworks rely on these under
the hood!

- Low-Level Flexibility

Direct hardware access

for fine-grained
optimizations (memory
management, kernel tuning)
that frameworks often hide

Developer advantage

- C++ Standard Support

making GPU code more
INntuitive vs. compute shaders

- Unified Codebase

Write hybrid CPU/GPU code in
one language, simplifying
maintenance vs. Juggling
separate shader/compute
pipelines

- Applications

110000+ GPU accelerated apps
2M+ Global community

Performance Gains

- 100x speed increase

Maximum performance boost
for optimized applications

- Energy Savings

Typical reduction (80%) in
power consumption vs CPU-
only

- Data Processing

Process TB/s of information in
real-time

CINECA

Why CUDA matters

Performance

- Massive Parallelism: scale to 1000’s of cores, 10000000’s of parallel thread
- Massive Gain: substantial performance improvements in tasks that can be divided into smaller, concurrent operations

Scalabllity

- Efficiently maps to the GPU architecture: well-suited for leveraging GPU capabilities
- Wide Range of Hardware: applications can scale from small embedded devices to large supercomputers

Flexibility
- Programming Languages: supports various programming languages
- Easy to use: let programmers strip away complexity associated with parallel computing and focus on parallel algorithms

CINECA

Where CUDA makes an impact

Al & Machine Learning Scientific Research

[‘5??] _g)

Powers neural networks and deep learning Accelerates complex simulations and

frameworks modeling
Financial Analysis Computer Vision

last ©

Speeds up risk assessment and predictive Enables real-time image and video

models processing

CINECA

CINECA

What is CUDA?

CUDA : Compute Unified Device Architecture

CPU

- Enable heterogeneous systems (i.e., CPU+GPU) Applications

- A new architecture instruction set called PTX (Parallel Thread eXecution) to

match GPU typical hardware : :
CUDA Libraries

- Parallelism allows developers to use GPUs for general purpose processing
(GPGPU)

CUDA Runtime

The SDK includes :
CUDA Driver

A Drivers, runtimes and API
- Compiler wrappers for complain coda code (nvcc)

- Libraries (cuBLAS, cuFFT, cuSolver) debuggers (cuda-gdb, cuda-memcheck), GPU
profilers (nvprof, nView), etc

- CUDA-aware languages C/C++, Fortran, PyCUDA, CUDA.JI

CINECA

CUDA programming model

- Abstraction of computer architectures o
Applications
- Bridge between app and implementation
- Communication abstraction: program vs. Programming Model
model boundary

—_—3» Communication Abstraction

- Enabled by compilers/libraries, hardware, and . .
0OS Compiler/Library

- Program dictates info sharing and » User/System Boundary

coordination Operating System I

- Offers logical view of computing architectures ——————————— Hardware/Software Boundary

- Embodied in languages or environments Architectures I

CINECA

CUDA execution model

CUDA programmer perspective

- Heterogenous computing: combination of CPU and GPU
- Host: The CPU and its memory
- Device: The GPU and its memory

- Execution: Programs run a on the host and launch parallel code (kernels) on the device
by many threads

Programming model view

- Kernels: A function written in CUDA C/C++ and executed on the GPU
« Launch configurations:

- Threads: Smallest unit of execution in CUDA

- Block: A collection of threads

- Grid: A collection of blocks

- Memory management: Allocate and transfer data between host (CPU) and device (GPU)

C Program
Sequential
Execution

Serial code

Parallel kernel
Kemell<<<>>>()

Serial code

Parallel kernel
Kernell<<<>>>()

Device
Grid 0

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) Block(l, 1) Block(21)
s S

Host %

Device
Grid 1

Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

i

CINECA

GPUs serve as a co-processor, not a standalone platform

CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

{ Memory hierarchy structure

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree

{ Thread hierarchy structure

J

CINECA

Embarrassing parallel code

CPU function

Vector Addition
sumArraysOnHost (float *A, float *B, float *C, const int N)
. . { for (int idx=0; i1idx<N; idx++)
» Simple operation: a memory-bound Clidx] = A[idx] + B[idx];
operation }
. Natural Fit for GPUs: Each element int main(int argc, char *“argv)
of a vector are independent {
- Scalability: Larger vectors benefit Start = cpuSecond();
from GPU or multi-core CPU sumArrayOnCPU(h_A, h B, h C, N);
parallelism, offering faster Double cpuTime = cpuSecond() - start;
computation than serial processing. printf (“CPU Execution Time: %f second \n”, cpuTime);

CINECA

Declaring Host-Called, Device-Executed Functions

CUDA differentiates between these functions by using one of the following function type qualifiers as a prefix

* host functions called from host and executed on the host

* __device__ functions called from device and execute on the device (a function that is called from a kernel needs the __device_
qualifier)

* _global__ qualifier for kernels that can be invoked globally

CINECA

Step to Launching a CUDA Kernel

e)
__global__ void()
Defines a kernel /I Kernel
can be invoked globally either from CPU or GPU —global__ _ . . . _
L) sumArraysOnDevice(float *A, float *B, float *C, const int N)
{

for (int idx=0; idx<N; idx++)
Clidx] = Afidx] + B[idx];

¥
(-) : .. s
Execution configuration int main(int arge, char *“argv)
Kernel_name <<<numBlocks, numThreads>>> (arguments); {)
Specifies grid and block dimensions start = cpuSecond();
- 7 sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, N);
cudaDeviceSynchronize();
double gpuTime = cpuSecond() - start;
; . printf("GPU Execution Time: %f seconds\n", gpuTime);
Synchronization
Launching kernel is asynchronous }
cudaDeviceSynchronize(): wait until device code completeness
\ Y

CINECA

2 Managing Memory

CINECA

Three simple processing steps

PCle or NVLink Bus
R

1 Copy input data from CPU memory to GPU

CINECA

Three simple processing steps

|l
|

PCle or NVLink Bus

CPU Memory

1 Copy input data from CPU memory to GPU

2 Copy input data from CPU memory to GPU

CINECA

Three simple processing steps

PCle or NVLink Bus
— o

1 Copy input data from CPU memory to GPU

2 Copy input data from CPU memory to GPU

3 Copy input data from CPU memory to GPU

CINECA

Data movement

.

2

3

Copy host to Device

Copy Device to host

Clean up memory for host and device

// Copy data from host to device

checkCuda(cudaMemcpy(d_A, h_A, size,
cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(d_B, h_B, size,
cudaMemcpyHostToDevice));

// Copy result from device to host

checkCuda(cudaMemcpy(h_C_ref, d_C, size,

cudaMemcpyDeviceToHost));

// Clean up memory

checkCuda(cudaFree(d_A));
checkCuda(cudaFree(d_B));
checkCuda(cudaFree(d_C));
cleanup(h_A, h_B, h_C, h_C_ref);

CINECA

Unified virtual memory (UVM)

Increased memory latency

- Single allocation, single pointer, accessible everywhere
eliminate the need of explicit copy and simplify code porting
- Enables the sharing of memory which reduces overall usage

Limited control over memory placement

UVM automatically manages memory placement, which
may not always be optimal for a given application

Developer view of GPU memory

L &

Unified memory

L &

CINECA

How does cudaMallocManaged actually works?

When UM is allocated, it may not be
resident initially on the CPU or the
GPU

cudaMallocManaged ()

Time

CINECA

How does cudaMallocManaged actually works?

When some work asks forthe memory
for the first time, a page fault will
occur

Time

CINECA

How does cudaMallocManaged actually works?

The page fault will trigger the migration
of the demanded memory

Time

CINECA

How does cudaMallocManaged actually works?

This process repeats anytime the
memory is requested somewhere In
the system where it is not resident

Time

CINECA

How does cudaMallocManaged actually works?

This process repeats anytime the
memory is requested somewhere In
the system where it is not resident

Work<<<>>> ()

Time

CINECA

Simplified memory management code

Allow to allocate and free memory

CPU code

int N = 10000;
size_t size = N *sizeof(int);

int *a;

a = (int*)malloc(size); >

@ee(a})

CUDA Code with UM

int N

size_t size = N *sizeof(int);

= 10000;

int *a;

<_cudaMallocManaged(&a, size); >

@da]

?ree(a);)

CINECA

2 CUDA Threads organization

CINECA

CUDA launches arrays of parallel threads

A block has a fixed number of threads which are

CCCCCC

CUDA launches arrays of parallel threads

For fully utilisation of the parallel processing power of the GPU

A CUDA kernel is executed as a grid (array) of
threads

- All threads in a grid run the same kernel code
Each thread has a unique ID: threadldx
- Threads are similar to data-parallel tasks.

- Threads independently execute the same operation
on a data subset

Follows SPMD model i.e the Single Program Multiple
Data => SIMT Single Instructions Multiple threads

threadldx.x

B
(

-

D
(

.

float x = input[threadldx.x];
float y = fun(x);

output[threadldx.x] = y;

CINECA

CINECA

Validate GPU results by comparing with CPU results

// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {
bool correct = true;
for (int i = 0; 1 < nElem; i++) {
i1f (fabs(hostRef[1] - gpuRef[1]) > 1le-5) {
correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %$f\n", i, hostRef[i], gpuRef[I]);

break;

}

}
if (correct) {
printf("Results match!\n”);
}
return correct;

}

CINECA

Kernel Launch Errors

Error handling in accelerated CUDA code is essential.

All CUDA API returns an error code of type cudaError t

> Special value cudaSuccess means that no error occurred

An error message can be printed with cudaGetErrorString

e

cudaError_t err;
err = cudaMallocManaged(&ea, N);
if(err |= cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err)); }

To check for errors occurring at the time of kernel launch, CUDA provides the cudaGetLastError function, which does

return a value of type cudaError t

e

someKernel <<<1, -1 >>>(); // - 1 is not a valid number of threads
cudaError_t err;

err = cudaGetLastError();

if(err |= cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err));}

CINECA

CUDA Error Handling Function

* A macro that wraps CUDA function calls for checking errors could be useful

e Can be wrapped around any function that returns a cudakError t

#include <stdio.h>
#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result) {
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert(result == cudaSuccess); }

return result; }

int main() {

/* The macro can be wrapped around any function returning
* a value of type cudaFError_t .

*/

checkCuda(cudaDeviceSynchronize())

}

CINECA

Asynchronous errors

To catch errors that occur in asynchronous part of the code (for example during the execution of an asynchronous
kernel), check the status returned by a subsequent synchronizing CUDA runtime API call, such as
cudaDeviceSynchronize.

cudaError_t asynchErr;
asynchErr = cudaDeviceSynchronize(); if (asynchErr != cudaSuccess)

1
printf("Error: %s\n", cudaGetErrorString(err));

CINECA

2 How to compile CUDA enable application?

CINECA

CUDA components: Source Files and Compilation

1 CUDA Driver

CUDA Libraries Integrated CPU+GPU Code
A critical piece of software that acts as the interface
between your application and the NVIDIA GPU hardware
CUDA Compiler I
CUDA Assembly |
for Computing (PTX) SR Flest e
The CUDA Toolkit
NVHPC Compiler: translate CUDA into optimised machine CUDA Driver Debugger C Compiler
instructions for NVIDIA GPUs & Runtime Profiler
GPU CPU I

Libraries: Comprehensive libraries like cuBLAS and cuDNN

are provided I
Debugging tools: robust debugging tools

CINECA

NVCC compiller

1 Compilation process

Code for host and device in some.cu file

CUDA compiler separates source code into host and
device components

Based LLVM open source compiler infrastructure

o nvce -arch=sm_80 -0 out some-CUDA.cu -run

- arch: indicates for which architecture the files must be
compiled (sm_80 is for TESLA A100 GPU)

- run: execute the successfully compiled binary
- Information on CUDA device: nvidia-smi, deviceQuery

CUDA C program

NVIDIA C compiler (NVCC)

4d0D 1SOH

3d0D =21A=(

Host C-preprocessor compilers
linker

Device JIT compiler

Heterogeneous computing platform

CINECA

Code samples for CUDA with CMake

Good support for CUDA projects!

cmake minimum_required(VERSION 3.20)
project(CUDA Tutorial LANGUAGES CXX CUDA)
add _executable(gpuArray gpuArray.cu)

target_include_directories(gpuArray PRIVATE $
{CMAKE_CURRENT SOURCE_DIR})

Features

- Variables for CUDA Toolkit, targeted architectures

- E.g., CMake 3.20: automatically detects default GPU
architecture that NVCC builds for

CUDA C program

NVIDIA C compiler (NVCC)

[H

e C-preprﬁr?lf:for complle% [Device JIT compiler]

Heterogeneous computing platform

CINECA

CINECA

Things to do

In this exercise, initialize an array using managed memory and process it on the GPU:
T1. Structure the function to call the GPU function.

T2. Allocate managed memory (accessible by both CPU and GPU)

T3. Launch kernel with a single block of threads

T4. Wait for GPU to finish before proceeding

T5. Free the managed memory

CINECA

2 Launching Parallel Kernels

CINECA

CUDA launches arrays of parallel threads

E = 3

The block of threads is broken up into “warps” of 32
threads

A “warp” is the vector element of the GPU

oy Gmy @ey Gmd [Gme i

thread 0...31 thread 32...63 thread 64...95 thread 96...127 thread 128...159 thread 160...191

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

Consider how computations will be distributed between threads for the following loop (N >> threads count):

float *A, *B, *C = ... ; for (int I = O; I <N; I++) A[I] = B[I] + C[I] J

doi=1,16
C[i] = Ali] + B[]

end do

Scalar instructions ENEEENNEEEEEEEN
- SIMD describes a class of instructions which perform the same 32 loads ...-..-$..--.---
operations on multiple registers simultaneously :2 ;dod:es +
I
Converting an algorithm to use SIMD is usually called “Vectorizing” mlslslsl=islsislslslaisisiagsls
. a SIMD register (or a vector register) can hold many values (2 - 16 Vector length l
values or more) of a single type SIMD instructions E—
5 lond I N D N
. Vectorisation helps you write code which has good access patterns) e bHE bEs 1-' I
to maximise bandwidth 4 stores o

O0O8 OEE ill L]

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

A loose extension of SIMD which is what CUDA’s computational model is,
although there is key differences
- Single instruction, multiple registers

SIMT thread registers

- Single instructions multiple addresses alll all+1] afl+2] afl+3]
l.e. parallel memory access!
- Single instruction, multiple flow paths b[l] a[l+1] b[l+2] b[l+3]
If statements are allowed!
a a a a
SIMT allows b b b b
- CUDA GPU to perform “vector” computations on scalar cores
- Much easier to vectorise than getting compiler to autovectorize on CPU | |+1 |42 143

https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

Feature SIMD SIMT

Architecture Traditional CPUs Utilized by NVIDIA GPUs
Execution Unit Multiple data lanes Multiple threads (warps)
Flexibility Low High

Branch Handling No support for divergence Supports thread divergence

Homogeneous data operations
Best Suited For Dynamic control flow applications

Common Usage CPU computing Vector processing on GPUs

CINECA

2 What is warp, and why is it important?

CINECA

What is WARP?

Hardware Multithreading

Warp Scheduler Warp Scheduler

* NVIDIA SM schedules threads in warps (groups of Instruction Dispatch Unit Instruction Dispatch Unit
32 threads)

+ Warp simply means a group of threads that are L

§Chedulgd tqgether to execute the same Warp 8 instruction 11 Warp 9 instruction 11
Instructions in lockstep.

+Execution contest stays on chip
 No overhead for switching warps Warp 15 instruction 95
* \olta SM has 4 warp schedulers, each one is “E’ -
responsible for = -
- feeding 32 CUDA cores Warp 9 instruction 12
- 8 load/store units Warp 3 instruction 34
| Woarp 2instruction 43 ___

- 8 special functions unit Warp 2 instruction 43

Warp 15 instruction 96

CINECA

Warps as Scheduling Units

Execution

Hardware view

Logical view

32 threads

SRS ERRNSISNIN

o
O
O
-
—
O
o
e
Z
O
O

Thvead 14| I el

32 threads

NEOSNONNNNNN
NENNNNYINNNNNN_
NYNNNNNNNNNNE
AININININININININININING
ANV IS

NENNONNONNNNNNN
NOENNNONNNOSN
NTRNNNNNNNONEN
YTNNNNNNNDRNSEN
NN INININININININININ
NONENONNNNNYNN
NNNNNNNNNNNN
AR VINININ NIRRT RN
NSRNNONNNNNNNYTN
NENNNNNNNNNN

RERRR
R

data

32 threads
32 threads
32 threads

—>

Multiprocessor

Warps

Thread Block

thread 31
thread 63

AN <f
™M
tollie
©
0 O
GG
o o
PP
— ™M
™M
tolllie
© G
0 O
G4
o o
PP
O N
™M
tollie
©
0 O
QY
o o
PP

Warp O
Warp 1:

 An implementation technique, not part of the CUDA
programming model

Groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware
e basic unit of execution in an SM

thread 95

thread 64, thread 65, thread 66,

Warp 3:

thread 127

thread 96, thread 97, thread 98,

Warp 4:

CINECA

Why do we need to have so many warps in an SM?

Latency hiding

 Memory Access Latency: Multiple warps can hide memory access latency by switching to another ready warp when one warp is waiting for data

 Instruction Pipeline Latency: Keeps the execution units busy while other warps are stalled due to dependencies or resource constraints

Resource Utilisation

« Maximizing Throughput: More warps allow for better utilization of SM resources (ALUs, memory bandwidth)

* Load Balancing: Distributes the workload evenly across the available execution units

Parallelism

« Enhancing Parallel execution: Multiple warps increase the parallelism, enabling more threads to be processed concurrently

* Improved Performance: Higher parallelism leads to better performance and throughput for data-intensive applications

CINECA

GPUs are designed to hide latency

o Latency is the number of clock cycles needed to complete an instruction, aka the number of cycles we need to wait for before another
dependent operation can start

» Arithmetic latency (~18-24 cycles)
» Memory access latency (~400 -800 cycles)

e |t can't be discarded (hardware limitation), but its effect can be controlled (hidden) by

» Saturating computational pipelines in computational bound problems
» Saturating band width in memory bound problems

warp 0 waiting while SM still busy Active block: when compute
| resources such as registers,

shared memory has been
Warp Scheduler 0 - Warp 2 | Warp 3 |- Warp 4 | allocated

Active warp: warp it contains are
called. Active warps can be

classified:
no eligible warps to
execute _ » Selected warp
> » Stalled warp
» Eligible warp

CINECA

Latency can be hidden in two possible ways

e The code need to be organised to provide the scheduler a sufficient number of independent operations

» I.e.the more warps are available, the more context-switch can hide latency
» And therefore proceed with other useful operations

e There are two possible ways and paradigms to use (can be combined too!)

» Thread-Level Parallelism (TLP)
» Instruction-Level Parallelism (ILP)

CINECA

More concurrently eligible threads

 Thread-level parallelism (TLP)

» Strive for high SM occupancy: provide as much threads as SM as possible (when a scheduler is free it will find easily a
warp to execute)

» Best approach for low number of independent operations per CUDA kernel

thread 1 thread 2 thread 3 thread 4

X=X+C Yy=Yy+C Z=Z+C W=W+C
X=X+Db y=y+b z=z+b W=W+D
X=X+a =y +a =Z+a W=W+2a

X —

4 Independent operations

CINECA

More concurrently eligible threads

* Instruction-level parallelism (ILP)

thread
» High-number of multiple independent operations inside CUDA kernel (each
kernel act on a lot of data) W=W+Db
» This will grant the scheduler to stay on the same warp and fully load each Z=2Z+D
hardware pipeline y=Yy+ b
X=X+Db
NOTE wowee
Z=2Z+4d :
» The scheduler will not select a new warp until there are eligible V=Y +a 4 mdependent
instructions ready to execute on the current warp X=X+a2a operations

CINECA

Throughput and Bandwidth

How to estimate the number of active warps required to hide latency

Number of Required Warps = Latency X Throughput

Bandwidth = "What's possible”

Theoretical peak data transfer rate (e.g.,

GPU memory < cores)

Focused on data movement
capacity (e.g., memory, PCle bus)

Hardware-limited (e.g., GDDR6X specs,

bus width)

Throughput = "What's achieved”

Achieved rate of useful work (e.g.,
Instructions, operations, or data
processed per second).

Can measure computational
efficiency (e.g., FLOPS, IPC).

Depends on software/hardware synergy
(e.g., kernel efficiency, parallelism)

Latency

Throughput

N—N—N\—N\—\—
N—N— N —N\—\—
N—N—N\—N\—\—
N—N—N—N\—\—
N—N—N\—N\—\—
N—N— N —N\—\—

CINECA

SM Parallelism Required to Maintain Full Arithmetic Utilization

FP32 FMA on A100 vs. Older Architectures

GPU
Architecture

Fermi (2010)

Kepler (2012)

Ampere (A100)

FP32 FMA Throughput
(ops/cycle/SM)

32 ops/cycle/SM

192 ops/cycle/SM

256 ops/cycle/SM

Instruction Latency
(cycles)

~20 cycles

~18 cycles

~4 cycles

Required
Parallelism

~ 640 ops

~ 3456 ops

~ 1024 ops

CINECA

CUDA Kernels

The error is expected:

« You can not launch more than 1024 threads
. ... In a thread block, which is a HW Iimit

Trying to launch 2048 threads, which

exceeds the maximum allowed per block (1024
threads)

__global_ void processArray(int *arr, int N) {
// Get the index of the thread
int idx = threadldx.x;

// Ensure the index is within bounds
if (idx < N){

arr[idx] *=2; // Multiply each element by 2
}
}

int main() { ...

// Launch kernel with a single block of threads

processArray<<< 1, number_of threads >>>(arr, N);

CINECA

2 GPU Thread hierarchy

CINECA

GPU Thread hierarchy

GPU consists of Hundreds of thousands of grids

Block 1024 threads

by B
‘Warp ‘Warp
(49444 CLI941%:

& »
< »

LK
(Warp 1024/32 = 32 warps
449999

TEH
Gonmr
414999

CINECA

Kernel execution across [hread, Block, and Grid

e In order to compute N elements on the GPU
In parallel, at least N concurrent threads must

(Thread € Block € Grid)

be created on the device
Block O

e GPU threads are grouped together in teams
or blocks of threads

Thread O

Thread 1

Thread 2 e Threads belonging to the same block or team
can cooperate togheter exchanging data
through a shared memory cache area

Thread 3

Thread 4

e Each block of threads will be executed
iIndependently

e No assumption is made on the blocks
execution order

CINECA

Kernel execution across [hread, Block, and Grid

threadldx.x: index of the thread with a block

GPU
performWork<<<2,4>>>()

CINECA

Kernel execution across [hread, Block, and Grid

blockIdx.x: index of a blocks in a grid
blockDim.x: number of threads per block

GPU
performWork<<<2,4>>>()

blockDim. x

11
S

blockIdx.Xx blockIdx.x = 1

11
o

CINECA

Kernel execution across [hread, Block, and Grid

gridDim.x: number of blocks in the grid, in this case 2

GPU
performWork<<<2,4>>>()

CINECA

Kernel execution across |hread, Block, and Grid

Choose the optimal block size

- A limited number of threads (1024) can fit inside a thread block
- Jo increase parallelism, we need to coordinate work among thread blocks.

- This is achieved by mapping element of data vector to threads using global index =threadldx.x + blockldx.x*blockDim.x

threadIdx.x threadIdx.x

0/112(3[4(5/6|7|0(1(2(3|4|5|6]|7

\ A J
Y Y
blockIdx.x = 2 blockIdx.x = 3
for blockIdx.x = 0 for blockIdx.x = 3
i=0%*8 + threadIdx.x ={ 0, 1, 2, ... , 7 } i=0%*8 + threadIdx.x ={0, 1, 2, ... , 7 }

CINECA

Grid size larger than data set

0 4 Code must check that the dataIndex
calculated by threadIdx.x +
blockIdx.x * blockDim.x IS less
GPU 1 XT than N, the number of data elements.

DATA

performWork<<<z, 4>>>()

1

GPU

0
1 3
—

CINECA

Choosing the optimal grid size

Choose the optimal block size

best performance for blocks that contain a number of threads that is a multiple of 32, due to GPU hardware traits

Example: we need to run 1000 parallel task with blocks containing 256 threads. How do we choose the optimal block size?

int N = 100000; size t threads per blocks = 256;

size t number of blocks = (N + threads per block - 1) / threads per block;

kernel<<<number of blocks, threads per block>>>

This calculation ensures that the number of blocks is sufficient to cover all the threads, even if the total number of threads is not
evenly divisible by the threads per block

The “-1" term is added to round up the division if necessary

CINECA

Choosing the optimal grid size

Choose the optimal block size

- Write an execution configuration that creates more threads than necessary
- Pass a value as an argument into the kernel (N) that represents that total
size if the data set to be processed/total threads needed to complete the

work

- Calculate the global index and if it does not exceed N perform the kernel

work

// Coalesced access example

__global vectorSum(int N)

int idx = threadIdx.x + blockIdx.x * blockDim.x;

{

if(idx < N){ // only do work if it does}

Know your limitations

Maximum size at each level of the thread hierarchy is device dependent. On

A100 typical you get :

- Maximum number of threads per block : 1024

- Maximum sizes of x-, y-, and -z dimensions of threads block 1024 x 1024 x
64
Maximum sizes of each dimension of grid of thread blocks: 65535 x
65535 x 65535 (about 280,000 billion blocks)

total vector elements < total threads

Block O Block 1 Block 2 Block 3

A grid with 4 blocks

CINECA

Every thread runs exactly the same program

E & 3

A limited number of threads (1024) can fit inside a thread block

I

To increase parallelism, we need to coordinate work among thread blocks

I

This is achieved by mapping element of data vector to threads using global index

int index = threadldx.x + (blockldx.x * blockDim.x)

I

All about this one line code

CINECA

Transparent scalabillity

Device
Block O Block 1
Block 2 Block 3
Block 4 Block 5
Block 6 Block 7
GPU with 2 SM

Kernel grid

/ Block O Block 1 \

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

User workload of 8 Blocks

Each block can execute in
any order relative to other
blocks

Time

Device

Block O

Block 4

Block 1 Block 2
Block 5 Block 6
GPU with 4 SM

Block 3

Block 7

CINECA

Mapping to hardware

1 CUDA invokes kernel grid

Host kicks off the execution of a kernel grid which
contains blocks of threads

2 Execute concurrently

Each SM runs multiple thread blocks
Each SP runs on thread from a thread blocks

3 Grid blocks distributed to SMs

Shared cache, register and memory
Global memory shared by all SMs

Software Hardware
CUDA Core

Thread

Qe

Thread Block

]
SM

T -~ ':::;E

Grid Device

CINECA

2 Checkpoint-1: Vector Sum

CINECA

Things to do

The starting code contains a CPU vector addition function. Using what you have learned so far, accelerate the addVectorsinto function
to run as a CUDA kernel on the GPU and to do its work in parallel. Consider the following guidelines.

T1. Augment the vecSum definition so that it is a CUDA kernel.

T2. Choose a working execution configuration for vecSum.

T3. Use cudaMallocmanaged to manage the data transfer

CINECA

2 Performance consideration

CINECA

Timing GPU code

1 Kernels are executed asynchronously

The cpu continues executing while kernels runs

o Native CUDA events

An event in CUDA is essentially a GPU time stamp that is
recorded at a user-specified point in time

3 Use profile

Nsight system, Toal view, Extra-e or SCOREP

C Program
Sequential
Execution

Serial code

Parallel kernel
KermelO<<<>>>()

Serial code

Paralle| kernel
Kernell<<<>>>()

Host %

Device
Grid 0

Block (0, 0) Block (1,0) Block (2, 0)

Block (“(é 1) Block (g 1)

Host %

Device

Grid 1
Mio.t» Mia.o)
Block (0, 1) | Block (1, 1)
Block (0, 2) Mial)

CINECA

Measuring performance with events

How to time code using CUDA events

-)

cudaEvent_t start, stop;
float time;
cudaEventCreate(8estart);
cudaEventRecord(&stop);

Create events to record

cudaEventRecord(start, O);
kernel<<<grid, threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS); .

Record events to timestamp
// do some work on the GPU
cudaEventRecord(stop, O); |
cudaEventSynchronize(stop); SEUUIME [SETHEEN Sl
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start); Destroy when done
cudaEventDestroy(stop);

CINECA

Validate GPU results by comparing with CPU results

// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {
bool correct = true;
for (int i = 0; 1 < nElem; i++) {
i1f (fabs(hostRef[1] - gpuRef[1]) > 1le-5) {
correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %$f\n", i, hostRef[i], gpuRef[I]);

break;

}

}
if (correct) {
printf("Results match!\n”);
}
return correct;

}

CINECA

Timing your kernel

double cpuSecond() {
struct timespec ts;
timespec_get(&ts, TIME_UTC);
return ((double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9);

} cru.

/* Measure time for CPU execution */

cudaMemcpy 17.8 ms

double start = cpuSecond();

19.3 ms

sumArraysOnCPU(h_A, h_B, hostRef, nElem); GPU

2.9 ms

double cpuTime = cpuSecond() - start;
printf("CPU Execution Time: %f seconds\n", cpuTime);
/* Measure time for GPU execution
double start = cpuSecond();
sumArraysOnGPU < < <gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);

time

CINECA

Nsight Systems and Compute

Nsight product family

Nsight System
Analyze application algorithm system-wide

Nsight Compute
Debug/ Optimise CUDA kernel

Nsight Graphics
Debug/ Optimise graphics workloads

Start here

Re-check overall
performance

Re-check overall
performance

Dive into top CUDA
kernels

Dive into graphics frame

Finished if
performance
satisfactory

CINECA

At First NSIGHT: Recording an application timeline

Notable flags for nays profile

-C —-—-stats=true --force-overwrite true -o my report ./myapp

CUDA API Statistics:

Time (%) Total Time (ns) Num Calls Average Minimum Maximum

2,389,597,601 2,389,597, 601. 2,389,597,601 2,389,597,601 - cudaDeviceSynchronize
560,567,324 186,855, 774. 37,749 560,460,726 323,551,379.2 cudaMallocManaged
8,408, 411 2,802,803. 2,302,933 3,332,155 515,243.9 cudaFree
79,831 7%9,831. 79,831 79,831 8.8 cudalaunchKernel

CUDA Memory Operation Statistics (by time):

Time (%) Total Time (ns) Operations Average Minimum Maximum StdDev Operation

75.4 10,016, 498 1,928 5,216.9 2,846 17,792 4,223.6 [CUDA Unifiad Mamary memcpy HtoD]
24.6 3,269,861 648 5,189.2 2,B15 16,862 4,121.6 [CUDA Unified Memory memcpy DtoH]

nsys --help or nsys [specific command] --help

- profile — start a profiling session

. -t: Selects the APIs to be traced (cuda, cublas, nvtx, mpi openmp and openacc in this example) NOTE:
- —cuda-memory-usage = true or false When using:
. --stats: if true, it generates summary of statistics after the collection In -s STMPDIR /tmp/nvidia

- --force-overwrite: If true, it overwrites the existing generated report
- -0 — name for the intermediate result file, created at the end of the collection (.gdrep filename)

See also ClNECA

Nsight system report

23s ~

-1-949ms

4960ms +980ms 24s 2 +20ms +40ms +60ms +80ms +100ms +120ms +140ms (PRIFA

» CPU (32) .10 100%

~ CUDA HW (0000:1d:00.0- NVIDI . kernel

~ 55.0% Context 1
+ 100.0% Kernels
» 86.5% setEKernel
» 8.0% accelKernel
» 5.6% moveKernel

NVTX
~ 45.0% Unified memory

81.7% HtoD transfer

(Time Step [170.058 ms)
(SOtE [167.165 ms)

000 0 0 00 0 O 0 a0 0. 00 o 0 0 O 0 0 Ot

Look at this pattern

CINECA

Performance consideration

1 Optimal Thread Utilization Software

Maximize occupancy by launching enough threads per
multiprocess

TTTTTT

Optimize performance by using block sizes that are
multiples of 32 Thread Block

g - B8 B

Matching grid size to GPU SMs can boost performance

CINECA

NVIDIA GPUs contain functional units called SMs

GPU Blocks of threads are
scheduled to run on SMs
Kernel<<<24.,4>>() SM
BO B1 B2 B4
B5 B6 B7 B8

B9 B10 B11 B12 .
GPU with 16 SMs
B3 B14 BI5 B16

B17 B18 B19 B20

B21 B22 B23 B24

CINECA

More than one block can be schedule on an SM

Kernel<<<24,4>>()

GPU

BO B1 B2 B4

B5 B6 B7 BS

B9 B10 B11 B12

B13 B14 BI5 B16
~

Bl7 B8 B9 B20

B21

B22

B23

B24

SM

Depending on the number of SMs on

a GPU, and the requirements of a
block, more than one block can be
scheduled on SM

GPU with 16 SMs

CINECA

More than one block can be schedule on an SM

Kernel<<<24,4>>()

GPU

BO B1 B2 B4
B5 B6 B7 B8
B9 B10 B11 B12
B13 B14 B15 B16
B1/ B18 B19 B20
B21 B22 B23 B24

SM

Depending on the number of SMs on
a GPU, and the requirements of a
block, more than one block can be

scheduled on SM

GPU with 16 SMs

CINECA

More than one block can be schedule on an SM

Kernel<<<24,4>>()

GPU . . o
Grid dimensions divisible by the
| number of SMs on a GPU can prove
SM full SM utilisation
GPU with 16 SMs

BO B1 B2 B4
B5 B6 B7 B8
B9 B10 B11 B12
B13 B14 B15 B16
B1/ B18 B19 B20
B21 B22 B23 B24

Unused SMs

CINECA

Programmatically querying GPU device properties

The number of SMs on a GPU can differ depending on the specific GPU being used, so the number of SMs should not be hard-coded Into
a code bases

This information should be acquired programatically.

To obtain the id of the currently active GPU:

int deviceld;
cudaGetDevice(&deviceld);

To obtain a C struct which contains many properties about the currently active GPU device, including its number of SMs:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceld);

CINECA

- Are there hardware constraints on threads per block and blocks per
D .
grid??

CINECA

When the data set is larger than grid size?

« In this scenario, each thread should work on more elements.
- Work can be assigned programmatically with a grid- stride loop.

0! 12 || 16 20 24 28
1 17 21 25 29
|
2 18 22 26 30
3 19 23 27 31
N e /]
0 3 oml1lp2 3

CINECA

When the data set is larger than grid size?

. In this scenario, each thread should work on more elements. 0 4 8 12 || 16 || 20 24 || 28

- Work can be assigned programmatically with a grid- stride loop

> the first element to be assigned to a thread is calculated via the global
Index

5
\
I \
2 ?/ 10 | | 14 lw 22 || 26 || 30
f \
1
I

19 13 || 17 21 25 29

N

\
h 23 277 31
. Q\

‘\
performWork<d4<2,\ 4>>> ()

CINECA

11

|

When the data set is larger than grid size?

« In this scenario, each thread should work on more elements.

- Work can be assigned programmatically with a grid- stride loop

> the first element to be assigned to a thread is calculated via the global
Index

Int globallndex = threadldx.x + blockldx.x *blockDim.x;

performWoyk<<<f2, 45>> (

CINECA

When the data set is larger than grid size?

- In this scenario, each thread should work on more elements. 0 4 8 g e 20 28 / e
- Work can be assigned programmatically with a grid- stride loop /
> the first element to be assigned to a thread is calculated via the global 1 - 9 13 17 21 2/(/ 29
index /
2 6 10 14 18 22 27/ 30
/Y
/" / /
3 7
Int globallndex = threadldx.x + blockldx.x *blockDim.x;

perforpiWorkALL<L2 S4>>>F)
i“ Il H I3 i“ Il H I3

CINECA

- the next one is obtained by summing the number of threads in the grid

stride = blockDim.x * gridDim.x

Data set larger than grid size: grid-stride loop

Operation inside the kernel will be executed in a grid-stride loop:

__global void kernel(int *a, int N) {
int indexWithinTheGrid = threadlIdx.x + blockIdx.x * blockDim.x;
int gridStride = gridDim.x * blockDim.x;

for (int i1 = indexWithinTheGrid; i < N; 1 += gridStride)

{

// do work on al[i];

¥
¥

CINECA

2 Multidimensional blocks and grids

CINECA

Multidimensional Blocks and Grids

Host program specifies “grid-block-threads” configuration for
kernel at run time

- All threads spawned by a single kernel launch are collectively
called a grid

» All threads in a grid share the same global memory space

- Agrid is made up of many thread blocks

« Kernel needs to know run-time configuration

- Built-in-three-dimensional type for threads (uint3) and blocks
(dim3)

- threadldx.x, threadldx.y, threadldx.z

- blockldx.x, blockldx.y, blockldx.z

- blockDim.x, blockDim.y, blockDim.z

Grid Dimension: 3x2 = 6 Blocks

Block Dimension: 5x3 = 15
Threads/Blocks
(6 Bloeks) x(15 Threads/

Host Device
Grid
Kernel > Block Block Block
(0, 0) (1, 0) (2, 0)
quck’/ Block \\\ Block
,‘(6: 1) (11 1) \‘\(21 1)
Block (1, 1)

Bleeks) = 90 Total threads
in Grid

CINECA

Device Run-time Configuration

Type
dim3
uint3
dim3

uint3

Dimension
1D
2D

3D

Variable
gridDim

blockldx
blockDim

Threadldx

Variable

Description
Dimensions of grid
Index of block within grid
Dimensions of block

Index of thread within block

1D

X
y + y*DXx

Zz + y*Dx + z*DxDy

CINECA

CUDA compute grid

CUDA compute grid supports 1-3 dimensions

gpu_kernel<<<4,2>>>(...)
gpu_kernel<<<dim3(8, 4 , 1), dim3(4,2,1) >>>(...)

gpu_kernel<<<dim3(16, 8 , 4), dim3(8, 4, 2) >>>(...)

Useful for when

Dealing with multidimensional data
CUDA's dim3 type for both 2D and 3D grids and blocks

CUDA variables: gridDim.x, gridDim.y, gridDim.z, gridBlock.z,...

Grid

CINECA

Device Run-time Configuration

27 int main(int argc, char * *argv) cuda-whoami.cu

8 {
R9 constintb_x=2,b_y=38,b_z=4;
30 constintt_ x=8,t_.y=3,1t_2z=3;

21 Output:

32 int blocks_per grid=b_x *b_y * b_z; 24 blocks/grid
33 int threads_per_block=t_X * t_y * t_gz; 27 threads/block
5S4 648 total threads

35 printf("%d blocks/grid\n", blocks_per_grid);
36 printf("%d threads/block\n", threads_per_block);

37 printf("%d total threads\n", blocks_per_grid * threads_per_block); GPU on which this code ran has 384 cores

38

39 blocksPerGrid(b_x, b_y, b_2z); CUDA can run (a lot) more threads than cores!
40 threadsPerBlock(t_x, t_y, t_2z);

4]

42 whoami<<<blocksPerGrid,threadsPerBlock>>>();
45 cudaDeviceSynchronize();

44

45 return O;

46 }

CINECA

Device Run-time Configuration

é #include <stdio.h> cuda-whoa mi.cu

3 _ global wvoid whoami() {

4 int block_id =

S blockldx.x +

6 blockldx.y * gridDim.x +

7 blockldx.z * gridDim.x * gridDim.y;

8 0621 | Block(1 2 3) =621 | thread(000)= O

o int block_offset = 0622 | Block(1 2 3) =621 | thread(1 00) = 1

}(1) 30011;—)1@) kD kD 0623 | Block(1 2 3) =621 | thread(200) = 2
ockDim.x * blockDim.y * blockDim.z;) _ _

15 0624 Boc:((‘ 23)=6211thread(010)= 3

13 int thread offset = 0625 | Bloc '((2 3) = 62 tqread(‘l 1 O) = 4

14 threadldx.x +

15 threadldx.y * blockDim.x +

17 . .

18 int id = block_offset + thread_offset ; 0645 | Block(1 2 3) =621 | thread(0 2 2) = 24

19 0646 | Block(1 2 3) =621 | thread(1 2 2) = 25

20 printf("%04d | Block(%d %d %d) = %3d | thread(%d %d %d) = %3d\n", 0647 | Block(1 2 3) =621 | thread(2 2 2) = 26

21 id,

R blockldx.x, blockIdx.y, blockIdx.z, block_offset,

3 threadldx.x, threadldx.y, threadldx.z, thread_offset);

24

CINECA

Two matrix multiplication

n
Pij — Zk=1Mik ‘ Nkj

Pio = Moy ™ Nyjg + Mg * Ny + Myg ™ Ny + + Mz ™ N3 M P

Poo = My, * Nog + Mo * Nyg + Moy ™ Nyg + +My, * Ny

CINECA

Two matrix multiplication

volid matrixMultOnHost (float* M, float* N, float* P, int Width){
for (int row = 0; row < Width; ++row){

for (int col = 0; col < Width; ++col){ N

/| accumulate element-wise products] !

float pval = 0;

WIDTH

for (int k = 0; k < Width; ++k){
float a = M[row*Width + k];

- -

float b = M[k*Width + col];
pval += a*b; M P

}

P[row*width + col] = pval; -
} k

} WIDTH WIDTH

WIDTH

CINECA

CUDA compute grid supports 1-3 dimensions

2D

ix = threadldx.x + blockldx.x * blockDim.x

1

NnXx
int i = blockldx.x * blockDim.x + threadldx.x; >
int | = blockldx.y * blockDim.y + threadldx.z;

3D

Int 1 = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.z;
Int K = blockldx.z * blockDim.z + threadldx.z;

Awi@ypo|q x AXppPo|q + Axplpeaiyr = A

]

matrix coordinate: (ix,iy)
e CUDA “hides"” loop headers into kernel launch parameters global linear memory index: idx = iy*nx + ix

>
<

* Ranges are distributed between threads and blocks of threads
* Blocks number is rounded up to handle the remainder

CINECA

Two matrix multiplication on GPU

N Methods Time execution Speedup
Serial 25,18 1
2048x2048
CUDA 0,063 398,29

CINECA

2 Checkpoint-3: 2D_matrix_multiplication.cu

CINECA

Things to do

The starting point of this exercise contains a working host function, called matrixMulCPU. Your task is to build out the matrixMulGPU
CUDA kernel. The source code will execute the matrix multiplication with both functions, and compare their answers to verify the
correctness of your CUDA kernel.

Follow these guidelines.
T1. Create an execution configuration whose arguments are both dim3 values with the x and y dimensions set to greater than 1.

T2. Inside the body of the kernel, establish the running thread's unique index within the grid as usual, but you should define two indices
for the thread: one for the x axis of the grid, and one for the y axis of the grid.

T3. Use managed memory

CINECA

Unrolling loops

CINECA

Kernel execution across [hread, Block, and Grid

Choose the optimal block size

- A limited number of threads (1024) can fit inside a thread block
- Jo increase parallelism, we need to coordinate work among thread blocks.

- This is achieved by mapping element of data vector to threads using global index =threadldx.x + blockldx.x*blockDim.x

threadIdx.x threadIdx.x

0/112(3[4(5/6|7|0(1(2(3|4|5|6]|7

\ A J
Y Y
blockIdx.x = 2 blockIdx.x = 3
for blockIdx.x = 0 for blockIdx.x = 3
i=0%*8 + threadIdx.x ={ 0, 1, 2, ... , 7 } i=0%*8 + threadIdx.x ={0, 1, 2, ... , 7 }

CINECA

Unrolling loops

__global___ void unrolledMatrixMultiplicationKernel(float *A, float *B, float *C, int n, int m, int p) {
int i = blockldx.x * blockDim.x + threadldx.x; // Row index of C
int j = blockldx.y * blockDim.y + threadldx.y; // Column index of C

if(i<n &&j<p){

float sum = 0; // Changed to float

for(intk=0;k<m-3;k+=4){
sum+=Ali*"m+K]|*Blk*p+j]+Ai"m+k+1]*B[(k+1) "p+|] +

Ai*m+k+2]"B[(k+2)"p+j]+Ali"m+k+3]*B[(k+3) *p+]l;

s

// Handle remaining elements

for (intk=(mM/4)*4;k<m; k++) {
sum +=A[i*m+ K] * B[k * p + |];

s

Cli*p+j]=sum;

CINECA

Two matrix multiplication on GPU

N Methods Time execution Speedup
Serial 25,18 1
2048x2048 CUDA 0,063 398,29
Unrolled loop 0,055491 453,92

CINECA

What Bandwidth can a kernel achieve?

CINECA

Matrix transpose problem

SR

HED

7

11

data layout of original matrix

0 1 2

3 4“5

void transposeHost(float *out, float *in, const int nx, const int ny) {
for (int1y = 0; Iy < ny; ++iy) {
for (int ix = 0; IX < nX; ++ix) {
out[ix*ny+iy] = in[ly*nx+ix];
Y

}
}

data layout of transposed matrix

10 8|1

11 0 4

s | s

ML
ML
2]
HEE
transposed
2| 6 |10] 3| 7| m

CINECA

CUDA Matrix transpose

ix = threadldx.x + blockldx.x * blockDim.x iy

__global__

void tranposeRow(float *out, float *in, const int nx, const int ny) {
unsigned int ix = blockDim.x * blockldx.x + threadldx.x;
unsigned int iy = blockDim.y * blockldx.y + threadldx.y;

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[iy*nx + ix];}

threadldx.y + blockldx.y * blockDim.y

}
~ J
(™
__global__ =
void tranposeCol(float *out, float *in, const int nx, const int ny) { ny
unsigned int ix = blockDim.x * blockldx.x + threadldx.x; block width

unsigned int iy = blockDim.y * blockldx.y + threadldx.y;

If (Iix <nx && iy < ny) { out[ix*ny + iy] = in[ix*ny + iy]; }
h

CINECA

Effective Bandwidth of Kernels

BLOCKSIZE

16 X16

32X32

KERNEL

Theoretical peak bandwidth

copyRow: Load/store using rows

copyCol: Load/store using cols

copyRow: Load/store using rows

copyCol: Load/store using cols

BANDWIDTH [GB/s]

900,0

626,60

275,42

376,32

170,14

RATIO TO PEAK BANDWITDH (%)

69,62

30,60

41,81

18,90

CINECA

Naive Transpose: Reading Rows versus Reading Columns

__global__

void tranposeNRow(float *out, float *in, const int nx, const int ny) {
unsigned int ix = blockDim.x * blockldx.x + threadldx.x;
unsigned int iy = blockDim.y * blockldx.y + threadldx.y;

If (IXx <nx && iy < ny) { out[ix * ny + iy] = in[iy * nx + ix]; }
¥

BLOCKSIZE KERNEL

Theoretical peak bandwidth

copyRow: Load/store using rows

16 X16

copyCol: Load/store using rows

__global__

void tranposeNCol(float *out, float *in, const int nx, const int ny) {
unsigned int ix = blockDim.x * blockldx.x + threadldx.x;
unsigned int iy = blockDim.y * blockldx.y + threadldx.y;

If (ix <nx && iy < ny) { out[iy*nx + ix] = in[ix*ny + iy]; }
Y

BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)
900,0
273,09 30,34
296,09 32,90

CINECA

Unrolling Transpose: Reading Rows versus Reading Columns

__global__ void transposeUnroll4Row(float *out, float *in, const int nx, __global__ void transposeUnroll4Col(float *out, float *in, const int nx,
const int ny) { const int ny) {
unsigned int ix = blockDim.x * blockldx.x*4 + threadldx.x; unsigned int ix = blockDim.x * blockldx.x*4 + threadldx.x;
unsigned int iy = blockDim.y * blockldx.y + threadldx.y; unsigned int iy = blockDim.y * blockldx.y + threadldx.y;
unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy; unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;
// access in columns // access in columns
if (ix+3"blockDim.x < nx && iy < ny) { if (ix+3*blockDim.x < nx && iy < ny) {
out[to] = inl[ti]; out[ti] = in[to];
out[to + ny*blockDim.x] = in[ti+blockDim.x]; out[ti + blockDim.x] = in[to+ blockDim.x*ny];
out[to + ny*2*blockDim.x] = in[ti+2*blockDim.x]; out[ti + 2*blockDim.x] = in[to+ 2*blockDim.x*ny];
out[to + ny*3*blockDim.x] = in[ti+3*blockDim.x]; out[ti + 3*blockDim.x] = in[to+ 3*blockDim.x*ny];
; }
; }

CINECA

Effective Bandwidth of Kernels

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)
Theoretical peak bandwidth 900,0

NaiveRow: Load/store using rows 317,29 35,25

16 X16
NaiveCol: Load/store using rows 742,74 82,53
NaiveRow: Load/store using rows 160,73 17,86

32X32
NaiveCol: Load/store using rows 492,21 54,69

CINECA

CINECA

Things to do

In this exercise, you will accelerate an application that simulates the thermal conduction of silver in 2 dimensional space.

T1. Convert the step_kernel_mod function to execute on the GPU.
T2. Modify the main function to properly allocate data for use on CPU and GPU

The step_kernel_ref function executes on the CPU and is used for error checking. Because this code involves floating point calculations,
different processors, or even simply reordering operations on the same processor, can result in slightly different results. For this reason,

the error checking code uses an error threshold, instead of looking for an exact match.

CINECA

Take away message

CUDA gives each thread a unique ThreadID to distinguish between each other even

though the kernel instructions are the same

* Grids map to GPUs

* Threads map to Stream Processors (SP)

* Warps are groups of (32) threads that execute simultaneously

* Blocks map to the Streaming MultiProcessors (SMP)

On NVIDIA GPU typically you get
* Maximum number of threads per block: 1024

* Maximum sizes of x-, y-, and z- dimensions of thread block: 1024 x 1024 x 64

* Maximum size of each dimension of grid of thread blocks: 65535 x 65535 x 65535
(about 280,000 billion blocks)

CINECA

Recommended Resources

CUDA Programming Guide
CUDA API Reference Manual Reading

PTX Instruction Set Architecture

CUDA Compiler Driver NVCC Building executables

CUDA-MEMCHECK
Nsight Documentation Debugging & profiling

Kernel Profiling Guide

NVIDIA Developer Forums Clarifications, explanations, intricate details

CINECA

