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Why you should care about CUDA?

Grasping the basic elements of GPU programming

2
CUDA programming model

Kernel launch, Thread and Memory hierarchy 

3
Performance consideration

Memory management, analysis Nsight and Nvidia

4
Streams and Concurrency

Overlapping kernel execution & data transfer on Single/Multi GPU

Roadmap to basic to advanced



Topics is covered here  

Identify the basic terminology used in CUDA 
Compute Unified Device Architecture 

CUDA programming Model 
Program structure, Kernel launch, Managed memory, compilation workflow 
Measuring GPU performance 

Execution Model 
Understanding the Nature of Warp Execution, Thread hierarchy



Why you should care about CUDA?



Applications

Libraries OpenACC/OpenMP 
Directives CUDA

Drop-in Acceleration Easy Accelerations Maximum Flexibility

Increasing programming effort 

Productivity PerformancePortability

Ways to parallels an applications on Nvidia GPUs



Why CUDA matters 

Best of both worlds  

• High-Level Productivity 

Use optimized libraries 
(cuBLAS, cuDNN) for AI, math, 
and analytics without 
reinventing the wheel. 
Frameworks rely on these under 
the hood! 

• Low-Level Flexibility 

Direct hardware access 
for fine-grained 
optimizations (memory 
management, kernel tuning) 
that frameworks often hide

Developer advantage 

• C++ Standard Support  

making GPU code more 
intuitive vs. compute shaders 

• Unified Codebase 

Write hybrid CPU/GPU code in 
one language, simplifying 
maintenance vs. Juggling 
separate shader/compute 
pipelines 

• Applications  

110000+ GPU accelerated apps 
2M+ Global community

Performance Gains  

• 100x speed increase 

Maximum performance boost 
for optimized applications 

• Energy Savings 

Typical reduction (80%) in 
power consumption vs CPU-
only  

• Data Processing 

Process TB/s of information in 
real-time



Performance 

• Massive Parallelism: scale to 1000’s of cores, 10000000’s of parallel thread 

• Massive Gain: substantial performance improvements in tasks that can be divided into smaller, concurrent operations

Scalability 

• Efficiently maps to the GPU architecture: well-suited for leveraging GPU capabilities 

• Wide Range of Hardware: applications can scale from small embedded devices to large supercomputers

Flexibility 

• Programming Languages: supports various programming languages 

• Easy to use: let programmers strip away complexity associated with parallel computing and focus on parallel algorithms

Why CUDA matters 



Where CUDA makes an impact

AI & Machine Learning

Powers neural networks and deep learning 

frameworks

Scientific Research

Accelerates complex simulations and 

modeling

Computer Vision

Enables real-time image and video 

processing

Financial Analysis

Speeds up risk assessment and predictive 

models



What is CUDA?
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driver API. Each function of the runtime API is broken down into more basic operations issued to 
the driver API.

CPU
Applications

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU

FIGURE 1-13

RUNTIME API VERSUS DRIVER API

There is no noticeable performance difference between the runtime and driver 
APIs. How your kernels use memory and how you organize your threads on the 
device have a much more pronounced effect.

These two APIs are mutually exclusive. You must use one or the other, but it is not 
possible to mix function calls from both. All examples throughout this book use 
the runtime API.

A CUDA program consists of a mixture of the following two parts:

 ➤ The host code runs on CPU.

 ➤ The device code runs on GPU.

NVIDIA’s CUDA nvcc compiler separates the device code from the host code during the compila-
tion process. As shown in Figure 1-14, the host code is standard C code and is further compiled 
with C compilers. The device code is written using CUDA C extended with keywords for labeling 
data-parallel functions, called kernels. The device code is further compiled by nvcc. During the 
link stage, CUDA runtime libraries are added for kernel procedure calls and explicit GPU device 
manipulation.

CUDA : Compute Unified Device Architecture

• Enable heterogeneous systems (i.e., CPU+GPU) 

• A new architecture instruction set called PTX (Parallel Thread eXecution) to 
match GPU typical hardware  

• Parallelism allows developers to use GPUs for general purpose processing 
(GPGPU) 

The SDK includes

• A Drivers, runtimes and API  

• Compiler wrappers for complain coda code ( nvcc) 

• Libraries (cuBLAS, cuFFT, cuSolver) debuggers (cuda-gdb, cuda-memcheck), 
profilers (nvprof, nView), etc 

• CUDA-aware languages C/C++, Fortran, PyCUDA, CUDA.Jl 

What is CUDA?



CUDA programming model
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the programming model implementation, which is realized through a compiler or libraries using 
privileged hardware primitives and the operating system. The program, written for a programming 
model, dictates how components of the program share information and coordinate their activities. 
The programming model provides a logical view of speci! c computing architectures. Typically, it is 
embodied in a programming language or programming environment.

Applications

Programming Model

Compiler/Library

Operating System

Architectures

Communication Abstraction

User/System Boundary

Hardware/Software Boundary

FIGURE 2-1

In addition to sharing many abstractions with other parallel programming models, the CUDA 
programming model provides the following special features to harness the computing power of 
GPU architectures.

 ➤ A way to organize threads on the GPU through a hierarchy structure

 ➤ A way to access memory on the GPU through a hierarchy structure

You will focus on the ! rst topic in this and the next chapter, and learn the second topic in 
Chapters 4 and 5.

From the perspective of a programmer, you can view parallel computation from different levels, 
such as:

 ➤ Domain level

 ➤ Logic level

 ➤ Hardware level

As you work through your program and algorithm design, your main concern is at the domain level: 
how to decompose data and functions so as to solve the problem correctly and ef! ciently while run-
ning in a parallel environment. When you enter the programming phase, your concern turns to how to 
organize your concurrent threads. During this phase you are thinking at the logic level to ensure your 
threads and calculations solve the problem correctly. In C parallel programming, you must manage 
your threads explicitly using either pthreads or OpenMP techniques. CUDA exposes a thread hierar-
chy abstraction to allow you to control thread behavior. As you walk through examples in this book, 
you will see that this abstraction delivers superior scalability for parallel programming. At the hard-
ware level, being able to understand how threads are mapped to cores may help improve performance. 

• Abstraction of computer architectures 

• Bridge between app and implementation 

• Communication abstraction: program vs. 
model boundary 

• Enabled by compilers/libraries, hardware, and 
OS 

• Program dictates info sharing and 
coordination 

• Offers logical view of computing architectures 

• Embodied in languages or environments



CUDA programmer perspective  

• Heterogenous computing: combination of CPU and GPU 

• Host: The CPU and its memory 

• Device: The GPU and its memory  

• Execution: Programs run a on the host and launch parallel code (kernels) on the device 
by many threads

Programming model view 

• Kernels: A function written in CUDA C/C++ and executed on the GPU 

• Launch configurations: 

• Threads: Smallest unit of execution in CUDA 

• Block: A collection of threads 

• Grid: A collection of blocks 

• Memory management: Allocate and transfer data between host (CPU) and device (GPU)

CUDA programming modelCUDA execution model



CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

GPUs serve as a co-processor, not a standalone platform

Memory hierarchy structure Thread hierarchy structure 



Embarrassing parallel code

• Simple operation: a memory-bound 

operation 

• Natural Fit for GPUs: Each element 

of a vector are independent 

• Scalability: Larger vectors benefit 

from GPU or multi-core CPU 

parallelism, offering faster 

computation than serial processing. 

     sumArraysOnHost(float *A, float *B, float *C, const int N)

      { for (int idx=0; idx<N; idx++)
          C[idx] = A[idx] + B[idx];
   }

   int main(int argc, char **argv)
   {

..
Start = cpuSecond();

sumArrayOnCPU(h_A, h_B, h_C, N);

Double cpuTime = cpuSecond() - start;

printf(“CPU Execution Time: %f second \n”, cpuTime);

..
       }

// CPU functionVector Addition CPU function



CUDA differentiates between these functions by using one of the following function type qualifiers as a prefix

• __host__ functions called from host and executed on the host 

• __device__ functions called from device and execute on the device (a function that is called from a kernel needs the __device__ 
qualifier)

• __global__  qualifier for kernels that can be invoked globally

Declaring Host-Called, Device-Executed Functions



#include <stdio.h> 

__global__ void onGPU()  

{ 
printf(“This function runs on GPU\n”); 
}  

int main() 
{ 

onGPU<<<1, 1>>>(); 

cudaDeviceSynchronize(); 

}

__global__ void() 

Defines a kernel  
can be invoked globally either from CPU or GPU

Execution configuration 

Kernel_name <<<numBlocks, numThreads>>> (arguments); 
Specifies grid and block dimensions

Synchronization 

Launching kernel is asynchronous  
cudaDeviceSynchronize(): wait until device code completeness 

Parallel kernel execution

// Kernel 
__global__
 sumArraysOnDevice(float *A, float *B, float *C, const int N)
{

for (int idx=0; idx<N; idx++)
C[idx] = A[idx] + B[idx];

} 

int main(int argc, char **argv)
{

..
start = cpuSecond();
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, N);
cudaDeviceSynchronize();
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);

.. 

}

Step to Launching a CUDA Kernel



Managing Memory
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SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

PCIe or NVLink Bus

Three simple processing steps

1 Copy input data from CPU memory to GPU

Three simple processing steps
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SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe or NVLink Bus

Three simple processing steps

Copy input data from CPU memory to GPU1

2 Copy input data from CPU memory to GPU

Three simple processing steps
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SIMPLE PROCESSING FLOW

PCIe or NVLink Bus

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory

Three simple processing steps

Copy input data from CPU memory to GPU1

2 Copy input data from CPU memory to GPU

3 Copy input data from CPU memory to GPU

Three simple processing steps



Copy host to Device 

Data movement

1

2 Copy Device to host 

3 Clean up memory for host and device

// Copy data from host to device
checkCuda( cudaMemcpy(d_A, h_A, size,
cudaMemcpyHostToDevice) );
checkCuda( cudaMemcpy(d_B, h_B, size, 
cudaMemcpyHostToDevice) ); 

// Copy result from device to host
checkCuda( cudaMemcpy(h_C_ref, d_C, size, 
cudaMemcpyDeviceToHost) );

// Clean up memory
   checkCuda( cudaFree(d_A) );

checkCuda( cudaFree(d_B) );
checkCuda( cudaFree(d_C) );
cleanup(h_A, h_B, h_C, h_C_ref);



Unified memory

Unified virtual memory (UVM)

Developer view of GPU memoryIncreased memory latency

• Single allocation, single pointer, accessible everywhere 
eliminate the need of explicit copy and simplify code porting

• Enables the sharing of memory which reduces overall usage

Limited control over memory placement

UVM automatically manages memory placement, which 
may not always be optimal for a given application



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

… data accesses by the CPU will 
automatically be migrated

When UM is allocated, it may not be 
resident initially on the CPU or the 

GPU

?

How does cudaMallocManaged actually works?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

When some work asks for the memory 
for the first time, a page fault will 

occur

init()
?

How does cudaMallocManaged actually works?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

The page fault will trigger the migration 
of the demanded memory

How does cudaMallocManaged actually works?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the 
memory is requested somewhere in 
the system where it is not resident

?
work<<<>>>()

How does cudaMallocManaged actually works?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the 
memory is requested somewhere in 
the system where it is not resident

work<<<>>>()

How does cudaMallocManaged actually works?



Allow to allocate and free memory 

Simplified memory management code 

int N = 10000;  
size_t size = N*sizeof(int); 

int *a;  
a = (int*)malloc(size); 

free(a);

int N = 10000;  
size_t size = N*sizeof(int); 

int *a;  
cudaMallocManaged(&a, size); 

cudaFree(a);

CPU code CUDA Code with UM



CUDA Threads organization 



CUDA launches arrays of parallel threads

Thread block

A block has a fixed number of threads which are 
guaranteed to be running simultaneously on the same SM

Thread block



0 1 2 3 4

float x = input[threadIdx.x];

float y = fun(x);

output[threadIdx.x] = y;

A CUDA kernel is executed as a grid (array) of 
threads

• All threads in a grid run the same kernel code

• Each thread has a unique ID: threadIdx

• Threads are similar to data-parallel tasks.

• Threads independently execute the same operation 
on a data subset

• Follows SPMD model i.e the Single Program Multiple 
Data => SIMT Single Instructions Multiple threads 

th
re

ad
Id

x.
x

For fully utilisation of  the parallel processing power of the GPU 

CUDA launches arrays of parallel threads



Error handling



// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {

bool correct = true;

for (int i = 0; i < nElem; i++) {

if (fabs(hostRef[i] - gpuRef[i]) > 1e-5) {

correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %f\n", i, hostRef[i], gpuRef[I]);

break;

}

}

if (correct) {

printf("Results match!\n”);

}

return correct;

}

Validate GPU results by comparing with CPU results



Kernel Launch Errors

• Error handling in accelerated CUDA code is essential. 
• All CUDA API returns an error code of type cudaError_t 
‣ Special value cudaSuccess means that no error occurred  

• An error message can be printed with cudaGetErrorString

cudaError_t err; 
err = cudaMallocManaged(&a, N); 
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err)); }

• To check for errors occurring at the time of kernel launch, CUDA provides the cudaGetLastError function, which does 
return a value of type cudaError_t

someKernel <<<1, -1 >>>();           // - 1 is not a valid number of threads 
cudaError_t err; 
err = cudaGetLastError(); 
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err));}

Kernel Launch Errors



CUDA Error Handling Function

• A macro that wraps CUDA function calls for checking errors could be useful  
• Can be wrapped around any function that returns a cudaError_t

#include <stdio.h> 
#include <assert.h> 
 

inline cudaError_t checkCuda(cudaError_t result) {
   if (result != cudaSuccess) { 
        fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result)); 
        assert(result == cudaSuccess); } 
   return result; } 

int main() { 
/*  The macro can be wrapped around any function returning 
* a value of type `cudaError_t`. 
*/ 
checkCuda( cudaDeviceSynchronize() ) 
}

CUDA Error Handling Function



Asynchronous errors 

To catch errors that occur in asynchronous part of the code (for example during the execution of an asynchronous 
kernel), check the status returned by a subsequent synchronizing CUDA runtime API call, such as 
cudaDeviceSynchronize. 

cudaError_t asynchErr; 
asynchErr = cudaDeviceSynchronize(); if (asynchErr != cudaSuccess)
{ 

           printf("Error: %s\n", cudaGetErrorString(err)); 
      } 

Asynchronous errors



How to compile CUDA enable application?



NVHPC Compiler: translate CUDA into optimised machine 
instructions for NVIDIA GPUs
Libraries:  Comprehensive libraries like cuBLAS and cuDNN 
are provided
Debugging tools:  robust debugging tools

16 ❘ CHAPTER 1  HETEROGENEOUS PARALLEL COMPUTING WITH CUDA
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CUDA Libraries

CUDA Compiler

CPU Host Code

C Compiler

CPU

CUDA Assembly
for Computing (PTX)

CUDA Driver
& Runtime

Debugger
Profiler

GPU

Integrated CPU+GPU Code

FIGURE 1-14

The CUDA nvcc compiler is based on the widely used LLVM open source compiler infrastructure. 
You can create or extend programming languages with support for GPU acceleration using the 
CUDA Compiler SDK, as shown in Figure 1-15.

CUDA
C, C++, Fortran

New Language
Support

LLVM Compiler
For CUDA

NVIDIA
GPUs

New Processor
Support

×86
CPUs

FIGURE 1-15

The CUDA platform is also a foundation that supports a diverse parallel computing ecosystem, as 
shown in Figure 1-16. Today, the CUDA ecosystem is growing rapidly as more and more companies 
provide world-class tools, services, and solutions. If you want to build your applications on GPUs, 
the easiest way to harness the performance of GPUs is with the CUDA Toolkit (https://
developer.nvidia.com/cuda-toolkit), which provides a comprehensive development environ-
ment for C and C++ developers. The CUDA Toolkit includes a compiler, math libraries, and tools 
for debugging and optimizing the performance of your applications. You will also fi nd code samples, 
programming guides, user manuals, API references, and other documentation to help you get started.

CUDA Driver1

A critical piece of software that acts as the interface 
between your application and the NVIDIA GPU hardware

The CUDA Toolkit2

CUDA components: Source Files and Compilation
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Compilation process1

Code for host and device in some.cu file
CUDA compiler separates source code into host and 
device components
Based LLVM open source compiler infrastructure

nvcc -arch=sm_80 -o out some-CUDA.cu -run2

- arch: indicates for which architecture the files must be 
compiled (sm_80 is for TESLA A100 GPU)
- run: execute the successfully compiled binary
- Information on CUDA device: nvidia-smi, deviceQuery 

NVIDIA C compiler (NVCC)

Heterogeneous computing platform

Host C-preprocessor compilers 
linker Device JIT compiler

CUDA C program

NVCC compiler
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NVIDIA C compiler (NVCC)

Heterogeneous computing platform

Host C-preprocessor compilers 
linker Device JIT compiler

CUDA C program

Code samples for CUDA with CMake

cmake_minimum_required(VERSION 3.20) 

project(CUDA_Tutorial LANGUAGES CXX CUDA) 

add_executable(gpuArray gpuArray.cu) 

target_include_directories(gpuArray PRIVATE $

{CMAKE_CURRENT_SOURCE_DIR}) 

Good support for CUDA projects!

Features  

• Variables for CUDA Toolkit, targeted architectures  

• E.g., CMake 3.20:  automatically detects default GPU 

architecture that NVCC builds for



Checkpoint-1 



Things to do

In this exercise, initialize an array using managed memory and process it on the GPU:  

T1. Structure the function to call the GPU function.  

T2. Allocate managed memory (accessible by both CPU and GPU) 

T3. Launch kernel with a single block of threads 

T4. Wait for GPU to finish before proceeding 

T5. Free the managed memory



Launching Parallel Kernels



CUDA launches arrays of parallel threads

Thread block

Warp

thread 0…31 thread 32…63

Warp

thread 64…95

Warp

thread 96…127

Warp

thread 128…159

Warp

thread 160…191

Warp

The block of threads is broken up into “warps” of 32 
threads 

A “warp” is the vector element of the GPU 

Thread block



float *A, *B, *C = …. ; for (int I = 0; I <N; I++ ) A[I] = B[I] + C[I]

Consider how computations will be distributed between threads for the following loop (N >> threads count):

SIMD: a single sequential stream of SIMD instructions for CPU with AVX-512 support (512-bit vector registers - Xeon Phi and 2015’ CPU)

SIMT: Multiple instruction streams of scalar instructions for CUDA/GPU with 32 threads per warps: | thread is lightweight  GPU-thread

SIMT allows CUDA GPU to perform “vector” computations on scalar cores, which is must easier, than getting compiler to autovectorize on CPU and 
much easier than to vectorise the code manually

SIMT VS. SIMD execution model

• SIMD describes a class of instructions which perform the same 
operations on multiple registers simultaneously 

•  Converting an algorithm to use SIMD is usually called “Vectorizing”   

• a SIMD register (or a vector register) can hold many values (2 - 16 
values or more) of a single type  

• Vectorisation helps you write code which has good access patterns 
to maximise bandwidth

N. Shukla, OpenMP for HPC  

CINECA Bologna, Italy | July 12th 2021

Vectorisation is referred as SIMD parallelism

Vector length

+

+

do i = 1, 16
    C[i] = A[i] + B[I]
end do

Scalar instructions 
32 loads 
16 adds
16 stores

SIMD instructions 
8 loads 
4 adds
4 stores

Why vectorisation?  

• Operates on entire blocks of data, called vector
• In OpenMP, vectorisation is referred to as SIMD 

parallelism
• It gives you more compute per cycle
• A single instruction operates upon multiple data 

elements concurrently
• Hence may increase the FLOP/s rate of the 

processor 
• SIMD instruction use special SIMD registers 

containing multiple data elements
• Vectors help make good use of the memory 

hierarchy
• Vectorisation helps you write code which has 

good access patterns to maximise bandwidth

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model



https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

SIMT thread registers 
A loose extension of SIMD which is what CUDA’s computational model is, 

although there is key differences 

• Single instruction, multiple registers 
• Single instructions multiple addresses 

i.e. parallel memory access!
• Single instruction, multiple flow paths 

if statements are allowed!

SIMT allows  

•CUDA GPU to perform “vector” computations on scalar cores 

•Much easier to vectorise than getting compiler to autovectorize on CPU

a[I] a[I+1] a[I+2] a[I+3]

b[I] a[I+1] b[I+2] b[I+3]

a a a a

b b b b

I I+1 I+2 I+3

… … … …

SIMT VS. SIMD execution model
Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units



Architecture Traditional CPUs Utilized by NVIDIA GPUs

Execution Unit Multiple data lanes Multiple threads (warps)

Flexibility Low High

Branch Handling No support for divergence Supports thread divergence

Best Suited For
Homogeneous data operations

Dynamic control flow applications

Common Usage CPU computing Vector processing on GPUs

Feature SIMD SIMT

SIMT VS. SIMD execution model
Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units



What is warp, and why is it important?
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two warps and issue one instruction from each warp to a group of 16 CUDA cores, 16 load/store units, 
or 4 special function units (illustrated in Figure 3-4). The Fermi architecture, compute capability 2.x, can 
simultaneously handle 48 warps per SM for a total of 1,536 threads resident in a single SM at a time.

Warp Scheduler

Instruction Dispatch Unit

Warp 8 instruction 11

Warp 2 instruction 42

Warp 14 instruction 95

tim
e

Warp 8 instruction 12

Warp 14 instruction 96

Warp 2 instruction 43

Warp Scheduler

Instruction Dispatch Unit

Warp 9 instruction 11

Warp 3 instruction 33

Warp 15 instruction 95

Warp 9 instruction 12

Warp 3 instruction 34

Warp 15 instruction 96

FIGURE 3-4

One key feature of Fermi is the 64 KB on-chip confi gurable memory, which is partitioned between 
shared memory and L1 cache. For many high-performance applications, shared memory is a key 
enabler for performance. Shared memory allows threads within a block to cooperate, facilitates 
extensive reuse of on-chip data, and greatly reduces off-chip traffi c. CUDA provides a runtime API 
that can be used to adjust the amount of shared memory and L1 cache. Modifying the on-chip mem-
ory confi guration can lead to performance improvements depending on the usage of shared memory 
or cache in a given kernel. This topic will be covered in more detail in Chapters 4 and 5.

Fermi also supports concurrent kernel execution: multiple kernels launched from the same applica-
tion context executing on the same GPU at the same time. Concurrent kernel execution allows pro-
grams that execute a number of small kernels to fully utilize the GPU, as illustrated in Figure 3-5. 
Fermi allows up to 16 kernels to be run on the device at the same time. Concurrent kernel execution 
makes the GPU appear more like a MIMD architecture from the programmer’s perspective.

The Kepler Architecture
The Kepler GPU architecture, released in the fall of 2012, is a fast and highly effi cient, high-perfor-
mance computing architecture. Kepler features make hybrid computing even more accessible to you. 
Figure 3-6 illustrates the Kepler K20X chip block diagram, containing 15 streaming multiprocessors 
(SMs) and six 64-bit memory controllers. Three important innovations in the Kepler architecture 
are:

 ➤ Enhanced SMs

 ➤ Dynamic Parallelism

 ➤ Hyper-Q

What is WARP?

Hardware Multithreading

• NVIDIA SM schedules threads in warps (groups of 
32 threads)  

• Warp simply means a group of threads that are 
scheduled together to execute the same 
instructions in lockstep. 

• Execution contest stays on chip  

• No overhead for switching warps 

• Volta SM has 4 warp schedulers, each one is 
responsible for 

- feeding 32 CUDA cores 

- 8 load/store units 

- 8 special functions unit
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CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

Figure 2.13: Each thread computing the square of its own value

One limitation on blocks is that each block can hold up to 512 threads. In trivial cases where

each thread is independent of other threads (such as square array in the example above) the grid

can simply be augmented to contain more blocks. Grid dimensions are limited to 65535 x 65535 x 1

blocks. For situations where each thread is dependent of other threads such as the computation of a

dot product that exceeds 512 in length, A more sophisticated technique is required. The programmer

needs to be creative and craft a design that allow threads to be mapped to larger regions, and at the

same time not overlap the work of other threads. Taking the square array example, if the problem

deals with 1024 elements, each thread can be responsible for data at indices threadIdx and threadIdx

+ blockDim.x, where blockDim.x = 512.

Once a kernel is launched, the corresponding grid and block structure is created. The blocks

are then assigned to a SM by the SMC (see CUDA architecture). Each SM executes up to 8 blocks

concurrently. Remaining blocks are queued up until a SM is free. The SMCs are smart enough to

monitor resource usage and not assign blocks to SMs that are deficient of resources. This ensures

that all SMs are functioning to its maximum capacity. As shown in Figure 2.14[4], the more SM a

graphics card has, the more concurrent blocks can be executed. Although each block can contain

up to 512 threads, and each SM can execute up to a maximum of 8 concurrent blocks, it is not

true that at any given time a SM can execute 4096 concurrent threads. Resources are required to

maintain the thread and block IDs and its execution state. Due to hardware limitations the SM can
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

Groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware
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Thread blocks can be con! gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identi! er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  











Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

• An implementation technique, not part of the CUDA 
programming model  

• basic unit of execution in an SM

Warps as Scheduling Units



Latency hiding 

• Memory Access Latency: Multiple warps can hide memory access latency by switching to another ready warp when one warp is waiting for data 

• Instruction Pipeline Latency: Keeps the execution units busy while other warps are stalled due to dependencies or resource constraints

Resource Utilisation 

• Maximizing Throughput: More warps allow for better utilization of SM resources (ALUs, memory bandwidth) 

• Load Balancing: Distributes the workload evenly across the available execution units

Parallelism 

• Enhancing Parallel execution: Multiple warps increase the parallelism, enabling more threads to be processed concurrently 

• Improved Performance: Higher parallelism leads to better performance and throughput for data-intensive applications

Why do we need to have so many warps in an SM?Why do we need to have so many warps in an SM?



GPUs are designed to hide latency

• Latency is the number of clock cycles needed to complete an instruction, aka the number of cycles we need to wait for before another 
dependent operation can start  

‣ Arithmetic latency ( ~18-24 cycles )  
‣ Memory access latency ( ~400 -800 cycles) 

• It can’t be discarded (hardware limitation), but its effect can be controlled (hidden) by 

‣ Saturating computational pipelines in computational bound problems  
‣ Saturating band width in memory bound problems 
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Latency Hiding
An SM relies on thread-level parallelism to maximize utilization of its functional units. Utilization 
is therefore directly linked to the number of resident warps. The number of clock cycles between 
an instruction being issued and being completed is de! ned as instruction latency. Full compute 
resource utilization is achieved when all warp schedulers have an eligible warp at every clock cycle. 
This ensures that the latency of each instruction can be hidden by issuing other instructions in other 
resident warps.

Compared with C programming on the CPU, latency hiding is particularly important in CUDA pro-
gramming. CPU cores are designed to minimize latency for one or two threads at a time, whereas 
GPUs are designed to handle a large number of concurrent and lightweight threads in order to max-
imize throughput. GPU instruction latency is hidden by computation from other warps.

When considering instruction latency, instructions can be classi! ed into two basic types:

 ➤ Arithmetic instructions

 ➤ Memory instructions

Arithmetic instruction latency is the time between an arithmetic operation starting and its output 
being produced. Memory instruction latency is the time between a load or store operation being issued 
and the data arriving at its destination. The corresponding latencies for each case are approximately:

 ➤ 10-20 cycles for arithmetic operations

 ➤ 400-800 cycles for global memory accesses

Figure 3-15 illustrates a simple case for an execution pipeline in which warp 0 stalls. The warp 
scheduler picks up other warps to execute and then executes warp 0 when it is eligible again.

Warp 3Warp 2

Warp 6 Warp 5

Time

Warp Scheduler 0

Warp Scheduler 1 Warp 1

no eligible warps to
execute

warp 0 waiting while SM still busy

Warp 0 Warp 0 Warp 4

FIGURE 3-15

You may wonder how to estimate the number of active warps required to hide latency. Little’s 
Law can provide a reasonable approximation. Originally a theorem in queue theory, it can also be 
applied to GPUs:

Number of Required Warps = Latency × Throughput

Active block: when compute 
resources such as registers, 
shared memory has been 
allocated 

Active warp: warp it contains are 
called. Active warps can be 
classified: 

‣ Selected warp 

‣ Stalled warp 

‣ Eligible warp



Latency can be hidden in two possible ways

• The code need to be organised to provide the scheduler a sufficient number of independent operations  

‣ i.e. the more warps are available, the more context-switch can hide latency  
‣ And therefore proceed with other useful operations 

• There are two possible ways and paradigms to use (can be combined too!) 

‣ Thread-Level Parallelism (TLP) 
‣ Instruction-Level Parallelism (ILP)



More concurrently eligible threads

• Thread-level parallelism (TLP) 

‣ Strive for high SM occupancy: provide as much threads as SM as possible (when a scheduler is free it will find easily a 
warp to execute) 

‣ Best approach for low number of independent operations per CUDA kernel 

Hiding latencies
• The code need to be organized to provide the scheduler a sufficient
number of independent operations.

• There are two possible ways and paradigms to use, that can be
combined.
• Thread-Level Parallelism (TLP):
- high SM occupancy: provide as much threads per SM as possible
(when a scheduler is free it will find easily a warp to execute),
- best approach for low
number of independent
operations per CUDA
kernel.



• Instruction-level parallelism (ILP) 

‣ High-number of multiple independent operations inside CUDA kernel (each 
kernel act on a lot of data) 

‣ This will grant the scheduler to stay on the same warp and fully load each 
hardware pipeline

Hiding latencies
• The code need to be organized to provide the scheduler a sufficient
number of independent operations.

• There are two possible ways and paradigms to use, that can be
combined:
• Thread-Level Parallelism (TLP)
• Instruction-Level Parallelism (ILP)
- high number of multiple independent
operations inside CUDA kernel
(each kernel act on a lot of data),
- this will grant the scheduler to stay
on the same warp and fully load
each hardware pipeline.

• NOTE 

‣ The scheduler will not select a new warp until there are eligible 
instructions ready to execute on the current warp

More concurrently eligible threads



Throughput and Bandwidth
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Latency Hiding
An SM relies on thread-level parallelism to maximize utilization of its functional units. Utilization 
is therefore directly linked to the number of resident warps. The number of clock cycles between 
an instruction being issued and being completed is de! ned as instruction latency. Full compute 
resource utilization is achieved when all warp schedulers have an eligible warp at every clock cycle. 
This ensures that the latency of each instruction can be hidden by issuing other instructions in other 
resident warps.

Compared with C programming on the CPU, latency hiding is particularly important in CUDA pro-
gramming. CPU cores are designed to minimize latency for one or two threads at a time, whereas 
GPUs are designed to handle a large number of concurrent and lightweight threads in order to max-
imize throughput. GPU instruction latency is hidden by computation from other warps.

When considering instruction latency, instructions can be classi! ed into two basic types:

 ➤ Arithmetic instructions

 ➤ Memory instructions

Arithmetic instruction latency is the time between an arithmetic operation starting and its output 
being produced. Memory instruction latency is the time between a load or store operation being issued 
and the data arriving at its destination. The corresponding latencies for each case are approximately:

 ➤ 10-20 cycles for arithmetic operations

 ➤ 400-800 cycles for global memory accesses

Figure 3-15 illustrates a simple case for an execution pipeline in which warp 0 stalls. The warp 
scheduler picks up other warps to execute and then executes warp 0 when it is eligible again.
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You may wonder how to estimate the number of active warps required to hide latency. Little’s 
Law can provide a reasonable approximation. Originally a theorem in queue theory, it can also be 
applied to GPUs:

Number of Required Warps = Latency × Throughput
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Figure 3-16 illustrates Little’s Law visually. Suppose the average latency for an instruction in your 
kernel is 5 cycles. To keep a throughput of 6 warps executed per cycle, you will need at least 30 
warps in-! ight.

Throughput

La
te

nc
y

FIGURE 3-16

THROUGHPUT AND BANDWIDTH

Bandwidth and throughput are often confused, but may be used interchangeably 
depending on the situation. Both throughput and bandwidth are rate metrics used 
to measure performance.

Bandwidth is usually used to refer to a theoretical peak value, while throughput is 
used to refer to an achieved value.

Bandwidth is usually used to describe the highest possible amount of data transfer 
per time unit, while throughput can be used to describe the rate of any kind of 
information or operations carried out per time unit, such as, how many instruc-
tions are completed per cycle.

For arithmetic operations, the required parallelism can be expressed as the number of operations 
required to hide arithmetic latency. Table 3-3 lists the number of required operations for Fermi 
and Kepler devices. The arithmetic operation used as an example here is a 32-bit ! oating-point
 multiply-add (a + b × c), expressed as the number of operations per clock cycle per SM. The 
throughput varies for different arithmetic instructions.

How to estimate the number of active warps required to hide latency

Bandwidth = "What’s possible" Throughput = "What’s achieved"

Theoretical peak data transfer rate (e.g., 
GPU memory ↔ cores)

Achieved rate of useful work (e.g., 
instructions, operations, or data 
processed per second).

Focused on data movement 
capacity (e.g., memory, PCIe bus)

Can measure computational 
efficiency (e.g., FLOPS, IPC).

Hardware-limited (e.g., GDDR6X specs, 
bus width)

Depends on software/hardware synergy 
(e.g., kernel efficiency, parallelism)



SM Parallelism Required to Maintain Full Arithmetic Utilization

GPU  
Architecture

FP32 FMA Throughput  
(ops/cycle/SM) 

Instruction Latency  
(cycles) 

Required 
Parallelism 

Fermi (2010) 32 ops/cycle/SM ~20 cycles ~ 640 ops

Kepler (2012) 192 ops/cycle/SM ~18 cycles ~ 3456 ops

Ampere (A100) 256 ops/cycle/SM ~4 cycles ~ 1024 ops

FP32 FMA on A100 vs. Older Architectures



CUDA Kernels

__global__ void processArray(int *arr, int N) { 
    // Get the index of the thread 
    int idx = threadIdx.x; 

    // Ensure the index is within bounds 
    if (idx < N) { 
        arr[idx] *= 2; // Multiply each element by 2 
    } 
} 

int main() {   … 

     // Launch kernel with a single block of threads 

   processArray<<< 1, number_of_threads >>>(arr, N); 

}

The error is expected: 

• You can not launch more than 1024 threads 
• … in a thread block, which is a HW limit

Warning: Trying to launch 2048 threads, which 

exceeds the maximum allowed per block (1024 

threads)



GPU Thread hierarchy



GPU Thread hierarchy 

….

Multi-processors: tens of thousands

GPU consists of Hundreds of thousands of grids

…. ….

1024/32  = 32 warps 

thread 0…31

Block 1024 threads

Warp Warp Warp

Warp

GPU Thread hierarchy



Grid

Block 0

Block 0

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Block 2

• In order to compute N elements on the GPU 
in parallel, at least N concurrent threads must 
be created on the device  

• GPU threads are grouped together in teams 
or blocks of threads  

• Threads belonging to the same block or team 
can cooperate togheter exchanging data 
through a shared memory cache area  

• Each block of threads will be executed 
independently 

• No assumption is made on the blocks 
execution order

(Thread ∈ Block ∈ Grid)

CUDA- provided variables describe its executing thread, block, and grid

Block 1

Kernel execution across Thread, Block, and Grid



threadIdx.x: index of the thread with a block

GPU 
performWork<<<2,4>>>()

0 1 2 3 0 1 2 3

CUDA- provided variables describe its executing thread, block, and gridKernel execution across Thread, Block, and Grid



gridDim.x: number of blocks in the grid, in this case 2 

GPU 
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and grid

blockIdx.x: index of a blocks in a grid

GPU 
performWork<<<2,4>>>()

blockDim.x: number of threads per block

blockDim.x = 4

blockIdx.x = 0 blockIdx.x = 1

CUDA- provided variables describe its executing thread, block, and gridKernel execution across Thread, Block, and Grid



gridDim.x: number of blocks in the grid, in this case 2 

GPU 
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and gridKernel execution across Thread, Block, and Grid



0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x
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threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

FIGURE 2-6

Because the data is stored linearly in global memory, you can use the built-in variables blockIdx.x 
and threadIdx.x to:

 ➤ Identify a unique thread in the grid.

 ➤ Establish a mapping between threads and data elements.

If you group all 32 elements into one block, then you just have one block as follows:

kernel_name<<<1, 32>>>(argument list);

If you let each block just have one element, you have 32 blocks as follows:

kernel_name<<<32, 1>>>(argument list);

A kernel call is asynchronous with respect to the host thread. After a kernel is invoked, control 
returns to the host side immediately. You can call the following function to force the host 
application to wait for all kernels to complete.

cudaError_t cudaDeviceSynchronize(void);

Some CUDA runtime APIs perform an implicit synchronization between the host and the device. 
When you use cudaMemcpy to copy data between the host and device, implicit synchronization at 
the host side is performed and the host application must wait for the data copy to complete.

cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind);

It starts to copy after all previous kernel calls have completed. When the copy is ! nished, control 
returns to the host side immediately.

ASYNCHRONOUS BEHAVIORS

Unlike a C function call, all CUDA kernel launches are asynchronous. Control 
returns to the CPU immediately after the CUDA kernel is invoked.

Writing Your Kernel
A kernel function is the code to be executed on the device side. In a kernel function, you de! ne the 
computation for a single thread, and the data access for that thread. When the kernel is called, many 
different CUDA threads perform the same computation in parallel. A kernel is de! ned using the 
__global__ declaration speci! cation as shown:

__global__ void kernel_name(argument list);

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x

Kernel execution across Thread, Block, and Grid



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex 
calculated by threadIdx.x + 

blockIdx.x * blockDim.x is less 
than N, the number of data elements.

Grid size larger than data set
Grid size larger than data set



Choosing the optimal grid size

Choose the optimal block size  

• best performance for blocks that contain a number of threads that is a multiple of 32, due to GPU hardware traits 

• Example: we need to run 1000 parallel task with blocks containing 256 threads. How do we choose the optimal block size? 

int N = 100000; size_t threads_per_blocks = 256;

size_t number_of_blocks = (N + threads_per_block – 1) / threads_per_block;

kernel<<<number_of_blocks, threads_per_block>>>(N); 

• This calculation ensures that the number of blocks is sufficient to cover all the threads, even if the total number of threads is not 
evenly divisible by the threads per block  

• The “-1” term is added to round up the division if necessary

Choosing the optimal grid size



Choose the optimal block size

• Write an execution configuration that creates more threads than necessary 
• Pass a value as an argument into the kernel (N) that represents that total 

size if the data set to be processed/total threads needed to complete the 
work

• Calculate the global index and if it does not exceed N perform the kernel 
work 

Know your limitations 

Maximum size at each level of the thread hierarchy is device dependent. On 
A100 typical you get : 
• Maximum number of threads per block : 1024
• Maximum sizes of x-, y-, and -z dimensions of threads block 1024 x 1024 x 

64 
•  Maximum sizes of each dimension of grid of thread blocks: 65535 x 

65535 x 65535 (about 280,000 billion blocks)

// Coalesced access example

__global__ vectorSum(int N) 

int idx = threadIdx.x + blockIdx.x * blockDim.x;

{

  if(idx < N){ // only do work if it does}

} 
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Timing with CPU Timer
A CPU timer can be created by using the gettimeofday system call to get the system’s wall-clock 
time, which returns the number of seconds since the epoch. You need to include the sys/time.h 
header ! le, as shown in Listing 2-5.

double cpuSecond() {
   struct timeval tp;
   gettimeofday(&tp,NULL);
   return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
}

You can measure your kernel with cpuSecond in the following way:

double iStart = cpuSecond();
kernel_name<<<grid, block>>>(argument list);
cudaDeviceSynchronize();
double iElaps = cpuSecond() - iStart;

Because a kernel call is asynchronous with respect to the host, you need to use 
cudaDeviceSynchronize to wait for all GPU threads to complete. The variable iElaps reports the 
time spent as if you had measured kernel execution with your wristwatch (in seconds).

Now test a big vector with 16M elements by setting the size of the data set as follows:

int nElem = 1<<24;

You need to modify the kernel for GPU scalability by calculating a row-major array index i using 
the block and thread indices, and by adding a test (i < N) that checks for those indices that may 
exceed array bounds, as follows:

__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N) {
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i < N) C[i] = A[i] + B[i];
}

With these changes, you are ready to measure the kernel using different execution con! gurations. To 
handle the case where the total number of threads created is larger than the total number of vector 
elements, you need to restrict your kernel from illegal global memory access, as shown in Figure 2-7.

Block 0 Block 1

A grid with 4 blocks

total vector elements < total threads

Block 2 Block 3

FIGURE 2-7

Listing 2-5 shows you how to measure the vector addition kernel with the CPU timer in the main 
function.

Choosing the optimal grid size



Every thread runs exactly the same program

Thread block

A limited number of threads (1024) can fit inside a thread block

To increase parallelism, we need to coordinate work among thread blocks

All about this one line code

This is achieved by mapping element of data vector to threads using global index

int index = threadIdx.x + (blockIdx.x * blockDim.x)

Thread block



Transparent scalability

Block 6 Block 7

Block 4 Block 5

Block 2 Block 3

Device

Block 0 Block 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

Each block can execute in 
any order relative to other 

blocks

Block 7

Ti
m

e

GPU with 2 SM

GPU with 4 SM

User workload of 8 Blocks



Mapping to hardware

Execute concurrently2

Each SM runs multiple thread blocks
Each SP runs on thread from a thread blocks

CUDA invokes kernel grid1

Host kicks off the execution of a kernel grid which 
contains blocks of threads

Grid blocks distributed to SMs3

Shared cache, register and memory 
Global memory shared by all SMs
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A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the 
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient 
utilization of GPU compute resources. You will learn much more about this issue in 
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains 
there until execution completes. An SM can hold more than one thread block at the same time. 
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of 
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned 
among thread blocks resident on the SM and registers are partitioned among threads. Threads 
in a thread block can cooperate and communicate with each other through these resources. 
While all threads in a thread block run logically in parallel, not all threads can execute 
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Checkpoint-1 : Vector Sum



Things to do

The starting code contains a CPU vector addition function. Using what you have learned so far, accelerate the addVectorsInto function 
to run as a CUDA kernel on the GPU and to do its work in parallel. Consider the following guidelines.  

T1.  Augment the vecSum definition so that it is a CUDA kernel. 

T2.  Choose a working execution configuration for vecSum. 

T3. Use cudaMallocmanaged to manage the data transfer



Performance consideration



Timing GPU code

Native CUDA events2

An event in CUDA is essentially a GPU time stamp that is 
recorded at a user-specified point in time

Kernels are executed asynchronously1

The cpu continues executing while kernels runs

Use profile3

Nsight system, Toal view, Extra-e or SCOREP

CUDA programmer perspective  

• Heterogenous computing: combination of CPU and GPU 

• Host: The CPU and its memory 

• Device: The GPU and its memory  

• Execution: Programs run a on the host and launch parallel code (kernels) on the device 
by many threads

Programming model view 

• Kernels: A function written in CUDA C/C++ and executed on the GPU 

• Launch configurations: 

• Threads: Smallest unit of execution in CUDA 

• Block: A collection of threads 

• Grid: A collection of blocks 

• Memory management: Allocate and transfer data between host (CPU) and device (GPU)

CUDA programming model



Measuring performance with events

Measuring performance with events

An event in CUDA is essentially a GPU time stamp that is recorded at a user-specified point in time. The API calls that 
create and destroy events, record events and convert timestamp difference into a floating-point value in milliseconds 

cudaEvent_t start, stop; 
float time;  
cudaEventCreate(&start);  
cudaEventRecord(&stop);  
cudaEventRecord( start, 0 );  
kernel<<<grid, threads>>> ( d_odata, d_idata, size_x, size_y, NUM_REPS);  

// do some work on the GPU 
cudaEventRecord( stop, 0 );   
cudaEventSynchronize( stop );  

cudaEventElapsedTime( &time, start, stop ); 
cudaEventDestroy( start ); 
cudaEventDestroy( stop );

How to time code using CUDA events

Create events to record

Record events to timestamp

Destroy when done

Get time between events



// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {

bool correct = true;

for (int i = 0; i < nElem; i++) {

if (fabs(hostRef[i] - gpuRef[i]) > 1e-5) {

correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %f\n", i, hostRef[i], gpuRef[I]);

break;

}

}

if (correct) {

printf("Results match!\n”);

}

return correct;

}

Validate GPU results by comparing with CPU results



double cpuSecond() { 

    struct timespec ts; 

    timespec_get(&ts, TIME_UTC); 

    return ((double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9); 

}  

/* Measure time for CPU execution */ 

double start = cpuSecond(); 

sumArraysOnCPU(h_A, h_B, hostRef, nElem); 

double cpuTime = cpuSecond() - start; 

printf("CPU Execution Time: %f seconds\n", cpuTime);  

/* Measure time for GPU execution 

double start = cpuSecond(); 

sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 

checkCuda( cudaDeviceSynchronize() );  // Ensure GPU kernel finishes 

double gpuTime = cpuSecond() - start; 

printf("GPU Execution Time: %f seconds\n", gpuTime);
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==17770== Profiling application: ./sumArraysOnGPU-timer
==17770== Profiling result:
Time(%)      Time     Calls       Avg       Min       Max  Name
 70.35%  52.667ms         3  17.556ms  17.415ms  17.800ms  [CUDA memcpy HtoD]
 25.77%  19.291ms         1  19.291ms  19.291ms  19.291ms  [CUDA memcpy DtoH]
  3.88%  2.9024ms         1  2.9024ms  2.9024ms  2.9024ms  sumArraysOnGPU
(float*, float*, int) 

The ! rst half of the message contains output from the program, and the second half contains out-
put from nvprof. Note that the CPU timer reported the elapsed kernel time as 3.26 milliseconds, 
and nvprof reported the elapsed kernel time as 2.90 milliseconds. For this case, the nvprof result 
is more accurate than the host-side timing result, because the time measured with the CPU timer 
included overhead from nvprof.

nvprof is a powerful tool to help you understand where time is being spent in your application. 
Notice that in this example, data transfer between the host and device takes more time than the 
kernel execution. A timeline view, as depicted in Figure 2-8 (not drawn to scale), shows time spent 
in CPU, time spent in data transfer, and time spent computing on the GPU.

CPU

GPU

time

2.9 ms

17.8 ms 19.3 mscudaMemcpy

FIGURE 2-8

For HPC workloads, it is important to understand the compute to communication ratio in a 
program. If your application spends more time computing than transferring data, then it may be 
possible to overlap these operations and completely hide the latency associated with transferring 
data. If your application spends less time computing than transferring data, it is important to 
minimize the transfer between the host and device. In Chapter 6, you will learn how to overlap 
computation with communication using CUDA streams and events.

COMPARING APP PERFORMANCE TO MAXIMIZE THEORETICAL LIMITS

While performing application optimization, it is important to determine how your 
application compares to theoretical limits. Counters collected from nvprof can 
help you derive instruction and memory throughput for your application. If you 
compare application measured values to theoretical peak values, you can determine 
if your application is limited by arithmetic or by memory bandwidth. Theoretical 
ratios can be derived as follows using Tesla K10 as an example:

 ➤ Tesla K10 Peak Single Precision FLOPS:

745 MHz core clock * 2 GPUs/board * (8 multiprocessors * 192 fp32 cores/
multiprocessor) * 2 ops/cycle = 4.58 TFLOPS

Timing your kernel 



Nsight Systems and Compute

Nsight product family 
Nsight System 

Analyze application algorithm system-wide 

Nsight Compute 
Debug/ Optimise CUDA kernel 

Nsight Graphics 
Debug/ Optimise graphics workloads

2.1 NSight Systems nsys

Workload level analysis: * Visualize algorithms, instruction flow, data flow, and scaling out to
multiple nodes * Identify areas to optimize within the code * Maximize computational and memory
utilization on the GPU

2.1.1 The NSight Systems Profiling Model

The Nsight profiling model is based on the Client Server model. The Client is your the machine
you will use to view reports generated by your code profiling. The Server is the node you run GPU
code on and generate the profiling report from. NVidia refers to this as the Two Phase approach
to profiling. A good workflow for profiling your code using the Client Server model would look like:

4

Start here

Re-check overall 
performance

Re-check overall 
performance

Dive into top CUDA 
kernels Dive into graphics frame

Finished if 
performance 
satisfactory



At First NSIGHT: Recording an application timeline

nsys profile -t cuda,nvtx,mpi,openacc --stats=true --force-overwrite true -o my_report ./myapp 

nsys --help or nsys [specific command] --help  
• profile – start a profiling session 
• -t: Selects the APIs to be traced ( cuda, cublas, nvtx, mpi openmp and openacc in this example) 
• —cuda-memory-usage = true or false 
• --stats: if true, it generates summary of statistics after the collection 
• --force-overwrite: if true, it overwrites the existing generated report 
• -o – name for the intermediate result file, created at the end of the collection (.qdrep filename)

See also https://docs.nvidia.com/nsight-systems/ 

Notable flags for nays profile

NOTE:  
When using: 
 ln -s $TMPDIR /tmp/nvidia



Nsight system report

Look at this pattern
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A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the 
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient 
utilization of GPU compute resources. You will learn much more about this issue in 
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains 
there until execution completes. An SM can hold more than one thread block at the same time. 
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of 
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned 
among thread blocks resident on the SM and registers are partitioned among threads. Threads 
in a thread block can cooperate and communicate with each other through these resources. 
While all threads in a thread block run logically in parallel, not all threads can execute 

Performance consideration

2

Load Balancing

Matching grid size to GPU SMs can boost performance

Optimal Thread Utilization1

Maximize occupancy by launching enough threads per 
multiprocessor

3

Resource Allocation

Optimize performance by using block sizes that are 
multiples of 32
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NVIDIA GPUs contain functional units called SMs
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Programmatically querying GPU device properties

• The number of SMs on a GPU can differ depending on the specific GPU being used, so the number of SMs should not be hard-coded                     into 
a code bases  

• This information should be acquired programatically.  
• To obtain the id of the currently active GPU: 

Programmatically querying GPU device properties

• The number of SMs on a GPU can differ depending on the specific GPU 
being used, so the number of SMs should not be hard-coded into a 
code bases. 

• This information should be acquired programatically.

• To obtain the id of the currently active GPU:
int deviceId;
cudaGetDevice(&deviceId);

• To obtain a C struct which contains many properties about the currently 
active GPU device, including its number of SMs:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceId);

• To obtain a C struct which contains many properties about the currently active GPU device, including its number of SMs: 

Programmatically querying GPU device properties

• The number of SMs on a GPU can differ depending on the specific GPU 
being used, so the number of SMs should not be hard-coded into a 
code bases. 

• This information should be acquired programatically.

• To obtain the id of the currently active GPU:
int deviceId;
cudaGetDevice(&deviceId);

• To obtain a C struct which contains many properties about the currently 
active GPU device, including its number of SMs:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceId);



Are there hardware constraints on threads per block and blocks per 
grid?



• In this scenario, each thread should work on more elements.   

• Work can be assigned programmatically with a grid- stride loop. 
• In this scenario, each thread 

should work on more elements.

• Work can be assigned 
programmatically with a grid-
stride loop.

Data set larger than grid size: grid-stride loop
When the data set is larger than grid size?



• In this scenario, each threads 
should work on more elements.

• Work can be assigned 
programmatically with a grid-
stride loop:
• the first element to be assigned 

to a thread is calculated via 
the global index,

• the next one is obtained by 
summing the number of 
threads in the grid

stride = blockDim.x * gridDim.x

                       

        

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data set larger than grid size: grid-stride loop
• In this scenario, each thread should work on more elements.   
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Data set larger than grid size: grid-stride loop
• In this scenario, each thread should work on more elements.   

• Work can be assigned programmatically with a grid- stride loop 

‣ the first element to be assigned to a thread is calculated via the global 
index 

int globalIndex = threadIdx.x + blockIdx.x *blockDim.x;
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• In this scenario, each threads 
should work on more elements.

• Work can be assigned 
programmatically with a grid-
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Data set larger than grid size: grid-stride loop
When the data set is larger than grid size?

• In this scenario, each thread should work on more elements.   

• Work can be assigned programmatically with a grid- stride loop 

‣ the first element to be assigned to a thread is calculated via the global 
index 

• the next one is obtained by summing the number of threads in the grid 

int globalIndex = threadIdx.x + blockIdx.x *blockDim.x;

stride = blockDim.x * gridDim.x



Data set larger than grid size: grid-stride loop

Operation inside the kernel will be executed in a grid-stride loop: 

Data set larger than grid size: grid-stride loop
• Example: for an array with 1000 elements and a grid with 250 threads, 

each thread in the grid will need to be used 4 times. 

• Operation inside the kernel will be executed in a grid-stride loop:

__global__ void kernel(int *a, int N) {
int indexWithinTheGrid = threadIdx.x + blockIdx.x * blockDim.x;
int gridStride = gridDim.x * blockDim.x;

for (int i = indexWithinTheGrid; i < N; i += gridStride)
{

// do work on a[i];
}

}



Multidimensional blocks and grids



Block Dimension: 5x3 = 15 
Threads/Blocks
(6 Blocks) x( 15 Threads/
Blocks) = 90 Total threads 
in Grid

Introducing the CUDA Programming Model ❘ 31
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FIGURE 2-5

All threads spawned by a single kernel launch are collectively called a grid. All threads in a grid 
share the same global memory space. A grid is made up of many thread blocks. A thread block is a 
group of threads that can cooperate with each other using:

 ➤ Block-local synchronization

 ➤ Block-local shared memory

Threads from different blocks cannot cooperate.

Threads rely on the following two unique coordinates to distinguish themselves from each other:

 ➤ blockIdx (block index within a grid)

 ➤ threadIdx (thread index within a block)

These variables appear as built-in, pre-initialized variables that can be accessed within kernel func-
tions. When a kernel function is executed, the coordinate variables blockIdx and threadIdx are 
assigned to each thread by the CUDA runtime. Based on the coordinates, you can assign portions of 
data to different threads.

The coordinate variable is of type uint3, a CUDA built-in vector type, derived from the basic inte-
ger type. It is a structure containing three unsigned integers, and the 1st, 2nd, and 3rd components 
are accessible through the fi elds x, y, and z respectively.

blockIdx.x
blockIdx.y
blockIdx.z

Host program specifies “grid-block-threads” configuration for 
kernel at run time

• All threads spawned by a single kernel launch are collectively 
called a grid 

• All threads in a grid share the same global memory space
• A grid is made up of many thread blocks
• Kernel needs to know run-time configuration 
• Built-in-three-dimensional type for threads (uint3) and blocks 

(dim3)

- threadIdx.x, threadIdx.y, threadIdx.z

- blockIdx.x, blockIdx.y, blockIdx.z

- blockDim.x, blockDim.y, blockDim.z

Grid Dimension: 3x2 = 6 Blocks

Multidimensional Blocks and Grids 



Type Variable Description

dim3 gridDim Dimensions of grid

uint3 blockIdx Index of block within grid 

dim3 blockDim Dimensions of block

uint3 ThreadIdx Index of thread within block 

Dimension Variable ID

1D (Dx) x

2D (Dx, Dy) y + y*Dx

3D (Dx, Dy, Dz) z + y*Dx + z*DxDy

Device Run-time Configuration



CUDA compute grid

CUDA compute grid supports 1-3 dimensions

gpu_kernel<<<4,2>>>(…) 

gpu_kernel<<<dim3(8, 4 , 1), dim3(4,2,1) >>>(…) 

gpu_kernel<<<dim3(16, 8 , 4), dim3(8, 4, 2) >>>(…) 

Useful for when

Dealing with multidimensional data

CUDA's dim3 type for both 2D and 3D grids and blocks

CUDA variables: gridDim.x, gridDim.y, gridDim.z, gridBlock.z,... 

GPU Thread Hierarchy

8

 In order to compute N elements on the GPU 
in parallel, at least N concurrent threads 
must be created on the device

 GPU threads are grouped togheter in teams
or blocks of threads

 Threads belonging to the same block or 
team can cooperate togheter exchanging 
data through a shared memory cache area 

 each block of threads will be executed 
independently

 no assumption is made on the blocks 
execution order

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)



 27  int main(int argc, char **argv) 
 28  { 
 29    const int b_x = 2, b_y = 3, b_z = 4; 
 30    const int t_x = 3, t_y = 3, t_z = 3; 
 31  
 32    int blocks_per_grid = b_x * b_y * b_z; 
 33    int threads_per_block = t_x * t_y * t_z; 
 34  
 35    printf("%d blocks/grid\n", blocks_per_grid); 
 36    printf("%d threads/block\n", threads_per_block); 
 37    printf("%d total threads\n", blocks_per_grid * threads_per_block); 
 38  
 39    dim3 blocksPerGrid(b_x, b_y, b_z); 
 40    dim3 threadsPerBlock(t_x, t_y, t_z); 
 41  
 42    whoami<<<blocksPerGrid,threadsPerBlock>>>(); 
 43    cudaDeviceSynchronize(); 
 44  
 45    return 0; 
 46  }

GPU on which this code ran has 384 cores  

CUDA can run (a lot) more threads than cores!

Output: 

24 blocks/grid

27 threads/block

648 total threads 

cuda-whoami.cu

Device Run-time Configuration



Device Run-time Configuration

  1   #include <stdio.h> 
  2  
  3   __global__ void whoami() { 
  4           int block_id = 
  5                  blockIdx.x + 
  6                  blockIdx.y * gridDim.x + 
  7                  blockIdx.z * gridDim.x * gridDim.y; 
  8  
  9            int block_offset = 
 10                  block_id * 
 11                  blockDim.x * blockDim.y * blockDim.z; 
 12  
 13           int thread_offset = 
 14                  threadIdx.x + 
 15                  threadIdx.y * blockDim.x + 
 16                  threadIdx.z * blockDim.x * blockDim.y; 
 17  
 18          int id = block_offset + thread_offset ; 
 19  
 20          printf("%04d | Block(%d %d %d) = %3d | thread(%d %d %d) = %3d\n", 
 21                         id, 
 22                         blockIdx.x, blockIdx.y, blockIdx.z, block_offset, 
 23                         threadIdx.x, threadIdx.y, threadIdx.z, thread_offset); 
 24    }

0621 | Block(1 2 3) = 621 | thread(0 0 0) =   0
0622 | Block(1 2 3) = 621 | thread(1 0 0) =   1
0623 | Block(1 2 3) = 621 | thread(2 0 0) =   2
0624 | Block(1 2 3) = 621 | thread(0 1 0) =   3
0625 | Block(1 2 3) = 621 | thread(1 1 0) =   4
…
…
0644 | Block(1 2 3) = 621 | thread(2 1 2) =  23
0645 | Block(1 2 3) = 621 | thread(0 2 2) =  24
0646 | Block(1 2 3) = 621 | thread(1 2 2) =  25
0647 | Block(1 2 3) = 621 | thread(2 2 2) =  26

cuda-whoami.cu



M00 M10 M20 M30

N00 N10

N01 N11

N02 N12

N03 N13

P00 P10 P20 P30

j=0

i=0

M

N

P

P00 = M00 * N00 + M10 * N10 + M20 * N20 + +M30 * N30

P10 = M00 * N10 + M10 * N11 + M20 * N12 + +M30 * N13

Pij = ∑n
k=1 Mik ⋅ Nkj

Two matrix multiplication



Two matrix multiplication

void matrixMultOnHost(float* M, float* N, float* P, int Width){

for (int row = 0; row < Width; ++row){

for (int col = 0; col < Width; ++col){

     // accumulate element-wise products
float pval = 0;

for (int k = 0; k < Width; ++k){

float a = M[row*Width + k];

float b = M[k*Width + col];

pval += a*b;

}

P[row*width + col] = pval; 

 }

}

}

P = M * N



CUDA compute grid supports 1-3 dimensionsCUDA compute grid (advanced)

CUDA compute grid supports 1-3 dimensions => eases moving multidimensional loops into GPU kernels

• CUDA “hides” loop headers into kernel launch parameters 
• Ranges are distributed between threads and blocks of threads 
• Blocks number is rounded up to handle the remainder

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.z;

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.z;
int k = blockIdx.z * blockDim.z + threadIdx.z;

2D 

3D 
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In a matrix addition kernel, a thread is usually assigned one data element to process. Accessing the 
assigned data from global memory using block and thread index is the ! rst issue you need to solve. 
Typically, there are three kinds of indices for a 2D case you need to manage:

 ➤ Thread and block index

 ➤ Coordinate of a given point in the matrix

 ➤ Offset in linear global memory

For a given thread, you can obtain the offset in global memory from the block and thread index by 
! rst mapping the thread and block index to coordinates in the matrix, then mapping those matrix 
coordinates to a global memory location.

In the ! rst step, you can map the thread and block index to the coordinate of a matrix with the 
following formula:

ix = threadIdx.x + blockIdx.x * blockDim.x
iy = threadIdx.y + blockIdx.y * blockDim.y

In the second step, you can map a matrix coordinate to a global memory location/index with the 
following formula:

idx = iy * nx + ix

Figure 2-10 illustrates the corresponding relationship among block and thread indices, matrix coor-
dinates, and linear global memory indices.

nx

ny

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

ix = threadIdx.x + blockIdx.x * blockDim.x

iy =
 threadIdx.y +

 blockIdx.y * blockD
im

.y

(ix,iy)

FIGURE 2-10



Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25,18 1

CUDA 0,063 398,29



Checkpoint-3 : 2D_matrix_multiplication.cu



Things to do

The starting point of this exercise contains a working host function, called matrixMulCPU. Your task is to build out the matrixMulGPU 
CUDA kernel. The source code will execute the matrix multiplication with both functions, and compare their answers to verify the 
correctness of your CUDA kernel. 

Follow these guidelines.  

T1.  Create an execution configuration whose arguments are both dim3 values with the x and y dimensions set to greater than 1.  

T2.  Inside the body of the kernel, establish the running thread's unique index within the grid as usual, but you should define two indices 
for the thread: one for the x axis of the grid, and one for the y axis of the grid. 

T3. Use managed memory 



Unrolling loops



0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x
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blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x

Kernel execution across Thread, Block, and Grid
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threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

FIGURE 2-6

Because the data is stored linearly in global memory, you can use the built-in variables blockIdx.x 
and threadIdx.x to:

 ➤ Identify a unique thread in the grid.

 ➤ Establish a mapping between threads and data elements.

If you group all 32 elements into one block, then you just have one block as follows:

kernel_name<<<1, 32>>>(argument list);

If you let each block just have one element, you have 32 blocks as follows:

kernel_name<<<32, 1>>>(argument list);

A kernel call is asynchronous with respect to the host thread. After a kernel is invoked, control 
returns to the host side immediately. You can call the following function to force the host 
application to wait for all kernels to complete.

cudaError_t cudaDeviceSynchronize(void);

Some CUDA runtime APIs perform an implicit synchronization between the host and the device. 
When you use cudaMemcpy to copy data between the host and device, implicit synchronization at 
the host side is performed and the host application must wait for the data copy to complete.

cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind);

It starts to copy after all previous kernel calls have completed. When the copy is ! nished, control 
returns to the host side immediately.

ASYNCHRONOUS BEHAVIORS

Unlike a C function call, all CUDA kernel launches are asynchronous. Control 
returns to the CPU immediately after the CUDA kernel is invoked.

Writing Your Kernel
A kernel function is the code to be executed on the device side. In a kernel function, you de! ne the 
computation for a single thread, and the data access for that thread. When the kernel is called, many 
different CUDA threads perform the same computation in parallel. A kernel is de! ned using the 
__global__ declaration speci! cation as shown:

__global__ void kernel_name(argument list);

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x



Unrolling loops

__global__ void unrolledMatrixMultiplicationKernel(float *A, float *B, float *C, int n, int m, int p) {
    int i = blockIdx.x * blockDim.x + threadIdx.x; // Row index of C
    int j = blockIdx.y * blockDim.y + threadIdx.y; // Column index of C

    if (i < n && j < p) {
        float sum = 0; // Changed to float
        for (int k = 0; k < m - 3; k += 4) {
            sum += A[i * m + k] * B[k * p + j] + A[i * m + k + 1] * B[(k + 1) * p + j] +
                         A[i * m + k + 2] * B[(k + 2) * p + j] + A[i * m + k + 3] * B[(k + 3) * p + j];
        }
        // Handle remaining elements
        for (int k = (m / 4) * 4; k < m; k++) {
            sum += A[i * m + k] * B[k * p + j];
        }
        C[i * p + j] = sum;
    }
}



Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25,18 1

CUDA 0,063 398,29

Unrolled loop 0,055491 453,92



What Bandwidth can a kernel achieve?
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Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications. 
Taking the transpose of a matrix implies exchanging each row with the corresponding column. 
Figure 4-23 illustrates a simple matrix and its transpose.
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FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be 
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
   for (int iy = 0; iy < ny; ++iy) {
      for (int ix = 0; ix < nx; ++ix) {
         out[ix*ny+iy] = in[iy*nx+ix];
      }
   }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed 
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.

1 2 3 40 11 22 33 44 55 66 77 88 9 10 11

4 8 1 50 44 88 11 55 99 22 6 10 3 7 11

data layout of original matrix

data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.
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Matrix transpose problem
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Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.

void transposeHost(float *out, float *in, const int nx, const int ny) {
for (int iy = 0; iy < ny; ++iy)  {
for (int ix = 0; ix < nx; ++ix)  {
out[ix*ny+iy] = in[iy*nx+ix];
}

      }
}



CUDA Matrix transpose
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   if (ix < nx && iy < ny) {
      out[iy*nx + ix] = in[iy*nx + ix];
   }
}

__global__ void copyCol(float *out, float *in, const int nx, 
  const int ny) {
   unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
   unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

   if (ix < nx && iy < ny) {
      out[ix*ny + iy] = in[ix*ny + iy];
   }
}

(ix,iy)

)(iy,ixx

ix = threadIdx.x + blockIdx.x * blockDim.x

block width
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FIGURE 4-26

The main program for calling these upper and lower bound kernels is provided in Listing 4-6. You 
can also download the full source in transpose.cu from Wrox.com. Note that a kernel identi! er 
iKernel is used to select which kernel to run in this example using a switch statement at the bot-
tom of main.

LISTING 4-6: Matrix transpose (transpose.cu) (main function only listed)

int main(int argc, char **argv) {
   // set up device
   int dev = 0;
   cudaDeviceProp deviceProp;
   cudaGetDeviceProperties(&deviceProp, dev);
   printf("%s starting transpose at ", argv[0]);

__global__
void tranposeRow(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) { out[iy*nx + ix] = in[iy*nx + ix];}

}

__global__
void tranposeCol(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) { out[ix*ny + iy] = in[ix*ny + iy]; }

}



32X32

copyRow: Load/store using rows 376,32 41,81

copyCol: Load/store using cols 170,14 18,90

Effective Bandwidth of Kernels 

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900,0

16 X16

copyRow: Load/store using rows 626,60 69,62

copyCol: Load/store using cols 275,42 30,60



Naive Transpose: Reading Rows versus Reading Columns

__global__
void tranposeNRow(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) { out[ix * ny + iy] = in[iy * nx + ix]; }

}

__global__
void tranposeNCol(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix < nx && iy < ny) { out[iy*nx + ix] = in[ix*ny + iy]; }

}

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900,0

16 X16

copyRow: Load/store using rows 273,09 30,34

copyCol: Load/store using rows 296,09 32,90



Unrolling Transpose: Reading Rows versus Reading Columns

__global__ void transposeUnroll4Row(float *out, float *in, const int nx, 
const int ny) {

unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;

// access in columns
if (ix+3*blockDim.x < nx && iy < ny) {

out[to] = in[ti];
out[to + ny*blockDim.x] = in[ti+blockDim.x];
out[to + ny*2*blockDim.x] = in[ti+2*blockDim.x];
out[to + ny*3*blockDim.x] = in[ti+3*blockDim.x];

}
}

__global__ void transposeUnroll4Col(float *out, float *in, const int nx, 
const int ny) {

unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;

// access in columns
if (ix+3*blockDim.x < nx && iy < ny) {

out[ti] = in[to];
out[ti + blockDim.x] = in[to+ blockDim.x*ny];
out[ti + 2*blockDim.x] = in[to+ 2*blockDim.x*ny];
out[ti + 3*blockDim.x] = in[to+ 3*blockDim.x*ny];

}
}



32X32

NaiveRow: Load/store using rows 160,73 17,86

NaiveCol: Load/store using rows 492,21 54,69

Effective Bandwidth of Kernels 

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900,0

16 X16

NaiveRow: Load/store using rows 317,29 35,25

NaiveCol: Load/store using rows 742,74 82,53



Final Project



Things to do

In this exercise, you will accelerate an application that simulates the thermal conduction of silver in 2 dimensional space.   

T1. Convert the step_kernel_mod function to execute on the GPU. 
T2. Modify the main function to properly allocate data for use on CPU and GPU 

The step_kernel_ref function executes on the CPU and is used for error checking. Because this code involves floating point calculations, 
different processors, or even simply reordering operations on the same processor, can result in slightly different results. For this reason, 
the error checking code uses an error threshold, instead of looking for an exact match.  



Take away message 

CUDA gives each thread a unique ThreadID to distinguish between each other even 
though the kernel instructions are the same 

•Grids map to GPUs 

•Threads map to Stream Processors (SP) 

•Warps are groups of (32) threads that execute simultaneously 

•Blocks map to the Streaming MultiProcessors (SMP)  

On NVIDIA GPU typically you get 

•Maximum number of threads per block: 1024  

•Maximum sizes of x-, y-, and z- dimensions of thread block: 1024 x 1024 x 64  

•Maximum size of each dimension of grid of thread blocks: 65535 x 65535 x 65535 
(about 280,000 billion blocks)



Recommended Resources

Reading 

Building executables

Clarifications, explanations, intricate details

Debugging & profiling

CUDA Programming Guide

CUDA API Reference Manual

PTX Instruction Set Architecture

CUDA Compiler Driver NVCC

CUDA-MEMCHECK

Nsight Documentation

Kernel Profiling Guide

NVIDIA Developer Forums


